ﻻ يوجد ملخص باللغة العربية
Temporal sentence grounding in videos~(TSGV), which aims to localize one target segment from an untrimmed video with respect to a given sentence query, has drawn increasing attentions in the research community over the past few years. Different from the task of temporal action localization, TSGV is more flexible since it can locate complicated activities via natural languages, without restrictions from predefined action categories. Meanwhile, TSGV is more challenging since it requires both textual and visual understanding for semantic alignment between two modalities~(i.e., text and video). In this survey, we give a comprehensive overview for TSGV, which i) summarizes the taxonomy of existing methods, ii) provides a detailed description of the evaluation protocols~(i.e., datasets and metrics) to be used in TSGV, and iii) in-depth discusses potential problems of current benchmarking designs and research directions for further investigations. To the best of our knowledge, this is the first systematic survey on temporal sentence grounding. More specifically, we first discuss existing TSGV approaches by grouping them into four categories, i.e., two-stage methods, end-to-end methods, reinforcement learning-based methods, and weakly supervised methods. Then we present the benchmark datasets and evaluation metrics to assess current research progress. Finally, we discuss some limitations in TSGV through pointing out potential problems improperly resolved in the current evaluation protocols, which may push forwards more cutting edge research in TSGV. Besides, we also share our insights on several promising directions, including three typical tasks with new and practical settings based on TSGV.
Temporal sentence grounding in videos aims to detect and localize one target video segment, which semantically corresponds to a given sentence. Existing methods mainly tackle this task via matching and aligning semantics between a sentence and candid
Despite Temporal Sentence Grounding in Videos (TSGV) has realized impressive progress over the last few years, current TSGV models tend to capture the moment annotation biases and fail to take full advantage of multi-modal inputs. Miraculously, some
In this paper, we explore a novel task named visual Relation Grounding in Videos (vRGV). The task aims at spatio-temporally localizing the given relations in the form of subject-predicate-object in the videos, so as to provide supportive visual facts
In this paper, we study the problem of weakly-supervised temporal grounding of sentence in video. Specifically, given an untrimmed video and a query sentence, our goal is to localize a temporal segment in the video that semantically corresponds to th
Temporal grounding of natural language in untrimmed videos is a fundamental yet challenging multimedia task facilitating cross-media visual content retrieval. We focus on the weakly supervised setting of this task that merely accesses to coarse video