ﻻ يوجد ملخص باللغة العربية
In this paper, we study the problem of weakly-supervised temporal grounding of sentence in video. Specifically, given an untrimmed video and a query sentence, our goal is to localize a temporal segment in the video that semantically corresponds to the query sentence, with no reliance on any temporal annotation during training. We propose a two-stage model to tackle this problem in a coarse-to-fine manner. In the coarse stage, we first generate a set of fixed-length temporal proposals using multi-scale sliding windows, and match their visual features against the sentence features to identify the best-matched proposal as a coarse grounding result. In the fine stage, we perform a fine-grained matching between the visual features of the frames in the best-matched proposal and the sentence features to locate the precise frame boundary of the fine grounding result. Comprehensive experiments on the ActivityNet Captions dataset and the Charades-STA dataset demonstrate that our two-stage model achieves compelling performance.
In this paper, we address a novel task, namely weakly-supervised spatio-temporally grounding natural sentence in video. Specifically, given a natural sentence and a video, we localize a spatio-temporal tube in the video that semantically corresponds
Despite Temporal Sentence Grounding in Videos (TSGV) has realized impressive progress over the last few years, current TSGV models tend to capture the moment annotation biases and fail to take full advantage of multi-modal inputs. Miraculously, some
Temporal language grounding (TLG) is a fundamental and challenging problem for vision and language understanding. Existing methods mainly focus on fully supervised setting with temporal boundary labels for training, which, however, suffers expensive
In this paper, we introduce a novel task, referred to as Weakly-Supervised Spatio-Temporal Anomaly Detection (WSSTAD) in surveillance video. Specifically, given an untrimmed video, WSSTAD aims to localize a spatio-temporal tube (i.e., a sequence of b
Temporal grounding of natural language in untrimmed videos is a fundamental yet challenging multimedia task facilitating cross-media visual content retrieval. We focus on the weakly supervised setting of this task that merely accesses to coarse video