ﻻ يوجد ملخص باللغة العربية
Motivated by the growing requirements on the operation of complex engineering systems, we present contracts as specifications for continuous-time linear dynamical systems with inputs and outputs. A contract is defined as a pair of assumptions and guarantees, both characterized in a behavioural framework. The assumptions encapsulate the available information about the dynamic behaviour of the environment in which the system is supposed to operate, while the guarantees express the desired dynamic behaviour of the system when interconnected with relevant environments. In addition to defining contracts, we characterize contract implementation, and we find necessary conditions for the existence of an implementation. We also characterize contract refinement, which is used to characterize contract conjunction in two special cases. These concepts are then illustrated by an example of a vehicle following system.
We introduce contracts for linear dynamical systems with inputs and outputs. Contracts are used to express formal specifications on the dynamic behaviour of such systems through two aspects: assumptions and guarantees. The assumptions are a linear sy
Verifying specifications for large-scale modern engineering systems can be a time-consuming task, as most formal verification methods are limited to systems of modest size. Recently, contract-based design and verification has been proposed as a modul
In this paper, we present a probabilistic adaptation of an Assume/Guarantee contract formalism. For the sake of generality, we assume that the extended state machines used in the contracts and implementations define sets of runs on a given set of var
A central question in verification is characterizing when a system has invariants of a certain form, and then synthesizing them. We say a system has a $k$ linear invariant, $k$-LI in short, if it has a conjunction of $k$ linear (non-strict) inequalit
When a finite group freely acts on a topological space, we can define its index and coindex. They roughly measure the size of the given action. We explore the interaction between this index theory and topological dynamics. Given a fixed-point free dy