ﻻ يوجد ملخص باللغة العربية
A central question in verification is characterizing when a system has invariants of a certain form, and then synthesizing them. We say a system has a $k$ linear invariant, $k$-LI in short, if it has a conjunction of $k$ linear (non-strict) inequalities -- equivalently, an intersection of $k$ (closed) half spaces -- as an invariant. We present a sufficient condition -- solely in terms of eigenvalues of the $A$-matrix -- for an $n$-dimensional linear dynamical system to have a $k$-LI. Our proof of sufficiency is constructive, and we get a procedure that computes a $k$-LI if the condition holds. We also present a necessary condition, together with many example linear systems where either the sufficient condition, or the necessary is tight, and which show that the gap between the conditions is not easy to overcome. In practice, the gap implies that using our procedure, we synthesize $k$-LI for a larger value of $k$ than what might be necessary. Our result enables analysis of continuous and hybrid systems with linear dynamics in their modes solely using reasoning in the theory of linear arithmetic (polygons), without needing reasoning over nonlinear arithmetic (ellipsoids).
This paper deals with the fault detection and isolation (FDI) problem for linear structured systems in which the system matrices are given by zero/nonzero/arbitrary pattern matrices. In this paper, we follow a geometric approach to verify solvability
Robustness and reliability are two key requirements for developing practical quantum control systems. The purpose of this paper is to design a coherent feedback controller for a class of linear quantum systems suffering from Markovian jumping faults
This paper investigates the H2 and H-infinity suboptimal distributed filtering problems for continuous time linear systems. Consider a linear system monitored by a number of filters, where each of the filters receives only part of the measured output
We provide out-of-sample certificates on the controlled invariance property of a given set with respect to a class of black-box linear systems. Specifically, we consider linear time-invariant models whose state space matrices are known only to belong
The interest in non-linear impulsive systems (NIS) has been growing due to its impact in application problems such as disease treatments (diabetes, HIV, influenza, among many others), where the control action (drug administration) is given by short-d