ﻻ يوجد ملخص باللغة العربية
Cloud networks are difficult to monitor because they grow rapidly and the budgets for monitoring them are limited. We propose a framework for estimating network metrics, such as latency and packet loss, with guarantees on estimation errors for a fixed monitoring budget. Our proposed algorithms produce a distribution of probes across network paths, which we then monitor; and are based on A- and E-optimal experimental designs in statistics. Unfortunately, these designs are too computationally costly to use at production scale. We propose their scalable and near-optimal approximations based on the Frank-Wolfe algorithm. We validate our approaches in simulation on real network topologies, and also using a production probing system in a real cloud network. We show major gains in reducing the probing budget compared to both production and academic baselines, while maintaining low estimation errors, even with very low probing budgets.
Despite their success, kernel methods suffer from a massive computational cost in practice. In this paper, in lieu of commonly used kernel expansion with respect to $N$ inputs, we develop a novel optimal design maximizing the entropy among kernel fea
Generative Adversarial Networks (GANs) have achieved great success in unsupervised learning. Despite the remarkable empirical performance, there are limited theoretical understandings on the statistical properties of GANs. This paper provides statist
Deep neural network controllers for autonomous driving have recently benefited from significant performance improvements, and have begun deployment in the real world. Prior to their widespread adoption, safety guarantees are needed on the controller
Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is
Federated learning (FL) has emerged as a prominent distributed learning paradigm. FL entails some pressing needs for developing novel parameter estimation approaches with theoretical guarantees of convergence, which are also communication efficient,