ترغب بنشر مسار تعليمي؟ اضغط هنا

Secure Your Ride: Real-time Matching Success Rate Prediction for Passenger-Driver Pairs

90   0   0.0 ( 0 )
 نشر من قبل Yuandong Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, online ride-hailing platforms have become an indispensable part of urban transportation. After a passenger is matched up with a driver by the platform, both the passenger and the driver have the freedom to simply accept or cancel a ride with one click. Hence, accurately predicting whether a passenger-driver pair is a good match turns out to be crucial for ride-hailing platforms to devise instant order assignments. However, since the users of ride-hailing platforms consist of two parties, decision-making needs to simultaneously account for the dynamics from both the driver and the passenger sides. This makes it more challenging than traditional online advertising tasks. Moreover, the amount of available data is severely imbalanced across different cities, creating difficulties for training an accurate model for smaller cities with scarce data. Though a sophisticated neural network architecture can help improve the prediction accuracy under data scarcity, the overly complex design will impede the models capacity of delivering timely predictions in a production environment. In the paper, to accurately predict the MSR of passenger-driver, we propose the Multi-View model (MV) which comprehensively learns the interactions among the dynamic features of the passenger, driver, trip order, as well as context. Regarding the data imbalance problem, we further design the Knowledge Distillation framework (KD) to supplement the models predictive power for smaller cities using the knowledge from cities with denser data and also generate a simple model to support efficient deployment. Finally, we conduct extensive experiments on real-world datasets from several different cities, which demonstrates the superiority of our solution.



قيم البحث

اقرأ أيضاً

Ride-hailing demand prediction is an essential task in spatial-temporal data mining. Accurate Ride-hailing demand prediction can help to pre-allocate resources, improve vehicle utilization and user experiences. Graph Convolutional Networks (GCN) is c ommonly used to model the complicated irregular non-Euclidean spatial correlations. However, existing GCN-based ride-hailing demand prediction methods only assign the same importance to different neighbor regions, and maintain a fixed graph structure with static spatial relationships throughout the timeline when extracting the irregular non-Euclidean spatial correlations. In this paper, we propose the Spatial-Temporal Dynamic Graph Attention Network (STDGAT), a novel ride-hailing demand prediction method. Based on the attention mechanism of GAT, STDGAT extracts different pair-wise correlations to achieve the adaptive importance allocation for different neighbor regions. Moreover, in STDGAT, we design a novel time-specific commuting-based graph attention mode to construct a dynamic graph structure for capturing the dynamic time-specific spatial relationships throughout the timeline. Extensive experiments are conducted on a real-world ride-hailing demand dataset, and the experimental results demonstrate the significant improvement of our method on three evaluation metrics RMSE, MAPE and MAE over state-of-the-art baselines.
Urban ride-hailing demand prediction is a crucial but challenging task for intelligent transportation system construction. Predictable ride-hailing demand can facilitate more reasonable vehicle scheduling and online car-hailing platform dispatch. Con ventional deep learning methods with no external structured data can be accomplished via hybrid models of CNNs and RNNs by meshing plentiful pixel-level labeled data, but spatial data sparsity and limited learning capabilities on temporal long-term dependencies are still two striking bottlenecks. To address these limitations, we propose a new virtual graph modeling method to focus on significant demand regions and a novel Deep Multi-View Spatiotemporal Virtual Graph Neural Network (DMVST-VGNN) to strengthen learning capabilities of spatial dynamics and temporal long-term dependencies. Specifically, DMVST-VGNN integrates the structures of 1D Convolutional Neural Network, Multi Graph Attention Neural Network and Transformer layer, which correspond to short-term temporal dynamics view, spatial dynamics view and long-term temporal dynamics view respectively. In this paper, experiments are conducted on two large-scale New York City datasets in fine-grained prediction scenes. And the experimental results demonstrate effectiveness and superiority of DMVST-VGNN framework in significant citywide ride-hailing demand prediction.
Accurate prediction of metro passenger volume (number of passengers) is valuable to realize real-time metro system management, which is a pivotal yet challenging task in intelligent transportation. Due to the complex spatial correlation and temporal variation of urban subway ridership behavior, deep learning has been widely used to capture non-linear spatial-temporal dependencies. Unfortunately, the current deep learning methods only adopt graph convolutional network as a component to model spatial relationship, without making full use of the different spatial correlation patterns between stations. In order to further improve the accuracy of metro passenger volume prediction, a deep learning model composed of Parallel multi-graph convolution and stacked Bidirectional unidirectional Gated Recurrent Unit (PB-GRU) was proposed in this paper. The parallel multi-graph convolution captures the origin-destination (OD) distribution and similar flow pattern between the metro stations, while bidirectional gated recurrent unit considers the passenger volume sequence in forward and backward directions and learns complex temporal features. Extensive experiments on two real-world datasets of subway passenger flow show the efficacy of the model. Surprisingly, compared with the existing methods, PB-GRU achieves much lower prediction error.
63 - Junzhe Shi , Bin Xu , Xingyu Zhou 2020
Electric city bus gains popularity in recent years for its low greenhouse gas emission, low noise level, etc. Different from a passenger car, the weight of a city bus varies significantly with different amounts of onboard passengers, which is not wel l studied in existing literature. This study proposes a passenger load prediction model using day-of-week, time-of-day, weather, temperatures, wind levels, and holiday information as inputs. The average model, Regression Tree, Gradient Boost Decision Tree, and Neural Networks models are compared in the passenger load prediction. The Gradient Boost Decision Tree model is selected due to its best accuracy and high stability. Given the predicted passenger load, dynamic programming algorithm determines the optimal power demand for supercapacitor and battery by optimizing the battery aging and energy usage in the cloud. Then rule extraction is conducted on dynamic programming results, and the rule is real-time loaded to onboard controllers of vehicles. The proposed cloud-based dynamic programming and rule extraction framework with the passenger load prediction shows 4% and 11% fewer bus operating costs in off-peak and peak hours, respectively. The operating cost by the proposed framework is less than 1% shy of the dynamic programming with the true passenger load information.
Ultra-reliable Low-Latency Communication (URLLC) is a key feature of 5G systems. The quality of service (QoS) requirements imposed by URLLC are less than 10ms delay and less than $10^{-5}$ packet loss rate (PLR). To satisfy such strict requirements w ith minimal channel resource consumption, the devices need to accurately predict the channel quality and select Modulation and Coding Scheme (MCS) for URLLC in a proper way. This paper presents a novel real-time channel prediction system based on Software-Defined Radio that uses a neural network. The paper also describes and shares an open channel measurement dataset that can be used to compare various channel prediction approaches in different mobility scenarios in future research on URLLC

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا