ترغب بنشر مسار تعليمي؟ اضغط هنا

Supervised Contrastive Learning

128   0   0.0 ( 0 )
 نشر من قبل Aaron Maschinot
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Contrastive learning applied to self-supervised representation learning has seen a resurgence in recent years, leading to state of the art performance in the unsupervised training of deep image models. Modern batch contrastive approaches subsume or significantly outperform traditional contrastive losses such as triplet, max-margin and the N-pairs loss. In this work, we extend the self-supervised batch contrastive approach to the fully-supervised setting, allowing us to effectively leverage label information. Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes. We analyze two possib



قيم البحث

اقرأ أيضاً

131 - Zixin Wen , Yuanzhi Li 2021
How can neural networks trained by contrastive learning extract features from the unlabeled data? Why does contrastive learning usually need much stronger data augmentations than supervised learning to ensure good representations? These questions inv olve both the optimization and statistical aspects of deep learning, but can hardly be answered by analyzing supervised learning, where the target functions are the highest pursuit. Indeed, in self-supervised learning, it is inevitable to relate to the optimization/generalization of neural networks to how they can encode the latent structures in the data, which we refer to as the feature learning process. In this work, we formally study how contrastive learning learns the feature representations for neural networks by analyzing its feature learning process. We consider the case where our data are comprised of two types of features: the more semantically aligned sparse features which we want to learn from, and the other dense features we want to avoid. Theoretically, we prove that contrastive learning using $mathbf{ReLU}$ networks provably learns the desired sparse features if proper augmentations are adopted. We present an underlying principle called $textbf{feature decoupling}$ to explain the effects of augmentations, where we theoretically characterize how augmentations can reduce the correlations of dense features between positive samples while keeping the correlations of sparse features intact, thereby forcing the neural networks to learn from the self-supervision of sparse features. Empirically, we verified that the feature decoupling principle matches the underlying mechanism of contrastive learning in practice.
We investigate a strategy for improving the efficiency of contrastive learning of visual representations by leveraging a small amount of supervised information during pre-training. We propose a semi-supervised loss, SuNCEt, based on noise-contrastive estimation and neighbourhood component analysis, that aims to distinguish examples of different classes in addition to the self-supervised instance-wise pretext tasks. On ImageNet, we find that SuNCEt can be used to match the semi-supervised learning accuracy of previous contrastive approaches while using less than half the amount of pre-training and compute. Our main insight is that leveraging even a small amount of labeled data during pre-training, and not only during fine-tuning, provides an important signal that can significantly accelerate contrastive learning of visual representations. Our code is available online at github.com/facebookresearch/suncet.
Semi-supervised learning has been an effective paradigm for leveraging unlabeled data to reduce the reliance on labeled data. We propose CoMatch, a new semi-supervised learning method that unifies dominant approaches and addresses their limitations. CoMatch jointly learns two representations of the training data, their class probabilities and low-dimensional embeddings. The two representations interact with each other to jointly evolve. The embeddings impose a smoothness constraint on the class probabilities to improve the pseudo-labels, whereas the pseudo-labels regularize the structure of the embeddings through graph-based contrastive learning. CoMatch achieves state-of-the-art performance on multiple datasets. It achieves substantial accuracy improvements on the label-scarce CIFAR-10 and STL-10. On ImageNet with 1% labels, CoMatch achieves a top-1 accuracy of 66.0%, outperforming FixMatch by 12.6%. Furthermore, CoMatch achieves better representation learning performance on downstream tasks, outperforming both supervised learning and self-supervised learning. Code and pre-trained models are available at https://github.com/salesforce/CoMatch.
Contrastive learning (CL) is effective in learning data representations without label supervision, where the encoder needs to contrast each positive sample over multiple negative samples via a one-vs-many softmax cross-entropy loss. However, conventi onal CL is sensitive to how many negative samples are included and how they are selected. Proposed in this paper is a doubly CL strategy that contrasts positive samples and negative ones within themselves separately. We realize this strategy with contrastive attraction and contrastive repulsion (CACR) makes the query not only exert a greater force to attract more distant positive samples but also do so to repel closer negative samples. Theoretical analysis reveals the connection between CACR and CL from the perspectives of both positive attraction and negative repulsion and shows the benefits in both efficiency and robustness brought by separately contrasting within the sampled positive and negative pairs. Extensive large-scale experiments on standard vision tasks show that CACR not only consistently outperforms existing CL methods on benchmark datasets in representation learning, but also provides interpretable contrastive weights, demonstrating the efficacy of the proposed doubly contrastive strategy.
Deep neural nets typically perform end-to-end backpropagation to learn the weights, a procedure that creates synchronization constraints in the weight update step across layers and is not biologically plausible. Recent advances in unsupervised contra stive representation learning point to the question of whether a learning algorithm can also be made local, that is, the updates of lower layers do not directly depend on the computation of upper layers. While Greedy InfoMax separately learns each block with a local objective, we found that it consistently hurts readout accuracy in state-of-the-art unsupervised contrastive learning algorithms, possibly due to the greedy objective as well as gradient isolation. In this work, we discover that by overlapping local blocks stacking on top of each other, we effectively increase the decoder depth and allow upper blocks to implicitly send feedbacks to lower blocks. This simple design closes the performance gap between local learning and end-to-end contrastive learning algorithms for the first time. Aside from standard ImageNet experiments, we also show results on complex downstream tasks such as object detection and instance segmentation directly using readout features.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا