ﻻ يوجد ملخص باللغة العربية
Wave modes induced by cross-phase reshaping of a probe photon in the guiding structure of a periodic train of temporal pulses are investigated theoretically with emphasis on exact solutions to the wave equation for the probe. The study has direct connection with recent advances on the issue of light control by light, the focus being on the trapping of a low-power probe by a temporal sequence of periodically matched high-power pulses of a dispersion-managed optical fiber. The problem is formulated in terms of the nonlinear optical fiber equation with averaged dispersion, coupled to a linear equation for the probe including a cross-phase modulation term. Shape-preserving modes which are robust against the dispersion are shown to be induced in the probe, they form a family of mutually orthogonal solitons the characteristic features of which are determined by the competition between the self-phase and cross-phase effects. Considering a specific context of this competition, the theory predicts two degenerate modes representing a train of bright signals and one mode which describes a train of dark signals. When the walk-off between the pump and probe is taken into consideration, these modes have finite-momentum envelopes and none of them is totally transparent vis-`a-vis the optical pump soliton.
We report the experimental observation of multiple dispersive waves emitted in the anomalous dispersion region of an optical fiber from a train of dark solitons. Each individual dispersive wave can be associated to one particular dark soliton of the
In this work, a systematic study, examining the propagation of periodic and solitary wave along the magnetic field in a cold collision-free plasma, is presented. Employing the quasi-neutral approximation and the conservation of momentum flux and ener
A modified physics-informed neural network is used to predict the dynamics of optical pulses including one-soliton, two-soliton, and rogue wave based on the coupled nonlinear Schrodinger equation in birefringent fibers. At the same time, the elastic
We investigate modulational instability (MI) in asymmetric dual-core nonlinear directional couplers incorporating the effects of the differences in effective mode areas and group velocity dispersions, as well as phase- and group-velocity mismatches.
Context: We integrate the 2D MHD ideal equations of a straight slab to simulate observational results associated with fundamental sausage trapped modes. Aims: Starting from a non-equilibrium state with a dense chromospheric layer, we analyse the evol