ﻻ يوجد ملخص باللغة العربية
We report the experimental observation of multiple dispersive waves emitted in the anomalous dispersion region of an optical fiber from a train of dark solitons. Each individual dispersive wave can be associated to one particular dark soliton of the train, using phase-matching arguments involving higher-order dispersion and soliton velocity. For a large number of dark solitons (>10), we observe the formation of a continuum associated with the efficient emission of dispersive waves.
The possibility of tailoring the guidance properties of optical fibers along the same direction as the evolution of the optical field allows to explore new directions in nonlinear fiber optics. The new degree of freedom offered by axially-varying opt
The theory of motion of edges of dispersive shock waves generated after wave breaking of simple waves is developed. It is shown that this motion obeys Hamiltonian mechanics complemented by a Hopf-like equation for evolution of the background flow tha
A modified physics-informed neural network is used to predict the dynamics of optical pulses including one-soliton, two-soliton, and rogue wave based on the coupled nonlinear Schrodinger equation in birefringent fibers. At the same time, the elastic
The theory of optical dispersive shocks generated in propagation of light beams through photorefractive media is developed. Full one-dimensional analytical theory based on the Whitham modulation approach is given for the simplest case of sharp step-l
We consider the step Riemann problem for the system of equations describing the propagation of a coherent light beam in nematic liquid crystals, which is a general system describing nonlinear wave propagation in a number of different physical applica