ﻻ يوجد ملخص باللغة العربية
Context: We integrate the 2D MHD ideal equations of a straight slab to simulate observational results associated with fundamental sausage trapped modes. Aims: Starting from a non-equilibrium state with a dense chromospheric layer, we analyse the evolution of the internal plasma dynamics of magnetic loops, subject to line-tying boundary conditions, and with the coronal parameters described in Asai et al. (2001) and Melnikov et al. (2002) to investigate the onset and damping of sausage modes. Methods: To integrate the equations we used a high resolution shock-capturing (HRSC) method specially designed to deal appropriately with flow discontinuities. Results: Due to non-linearities and inhomogeneities, pure modes are difficult to sustain and always occur coupled among them so as to satisfy, e.g., the line-tying constraint. We found that, in one case, the resonant coupling of the sausage fundamental mode with a slow one results in a non-dissipative damping of the former. Conclusions: In scenarios of thick and dense loops, where the analytical theory predicts the existence of fundamental trapped sausage modes, the coupling of fast and slow quasi-periodic modes -with a node at the center of the longitudinal speed- occur contributing to the damping of the fast mode. If a discontinuity in the total pressure between the loop and the corona is assumed, a fundamental fast sausage transitory leaky regime is spontaneously produced and an external compressional Alfven wave takes away the magnetic energy.
Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource, beyond the role as a mediator for entangling quantum operations on internal degrees of freedom, because of the large available Hilbert s
Diagnostics of MHD waves in the solar atmosphere is a topic which often encounters problems of interpretation, due partly to the high complexity of the solar atmospheric medium. Forward modeling can significantly guide interpretation, bridging the ga
In many astrophysical environments the plasma is only partially ionized, and therefore the interaction of charged and neutral particles may alter both the triggering of reconnection and its subsequent dynamical evolution. We derive the tearing mode m
Plasma experiments in laboratory settings offer unique opportunities to address fundamental aspects of the solar dynamo and magnetism in the solar atmosphere. We argue here that ground-based laboratory experiments have direct connections to NASA base
Turbulence in space and astrophysical plasmas is governed by the nonlinear interactions between counterpropagating Alfven waves. Here we present the theoretical considerations behind the design of the first laboratory measurement of an Alfven wave co