ترغب بنشر مسار تعليمي؟ اضغط هنا

A Speckle-Imaging Search for Close and Very Faint Companions to the Nearest and Brightest Wolf-Rayet Stars

80   0   0.0 ( 0 )
 نشر من قبل Michael Shara
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitationally bound companions to stars enable determinations of their masses, and offer clues to their formation, evolution and dynamical histories. So motivated, we have carried out a speckle imaging survey of eight of the nearest and brightest Wolf-Rayet (WR) stars to directly measure the frequency of their resolvable companions, and to search for much fainter companions than hitherto possible. We found one new, close companion to each of WR 113, WR 115 and WR 120 in the separation range 0.2 - 1.2. Our results provide more evidence that similar-brightness, close companions to WR stars are common. More remarkably, they also demonstrate that the predicted, but much fainter and thus elusive companions to WR stars are now within reach of modern speckle cameras on 8m class telescopes by finding the first example. The new companion to WR 113 is just 1.16 distant from it, and is 8 magnitudes fainter than the WR star. The empirical probability of a chance line-of-sight of the faint companion at the position of WR 113 is < 0.5%, though we cannot yet prove or disprove if the two stars are gravitationally bound. If these three new detections are physical companions we suggest, based on their narrowband magnitudes, colors, reddenings and GAIA distances that the companions to WR113, WR 115 and WR 120 are an F-type dwarf, an early B-type dwarf, and a WNE-type WR star, respectively.

قيم البحث

اقرأ أيضاً

The orbital periods of most eclipsing cataclysmic binaries are not undergoing linear secular decreases of order a few parts per billion as expected from simple theory. Instead, they show several parts per million increases and decreases on timescales of years to decades, ascribed to magnetic effects in their donors, triple companions, or both. To directly test the triple companion hypothesis, we carried out a speckle imaging survey of six of the nearest and brightest cataclysmic variables. We found no main sequence companions earlier than spectral types M4V in the separation range 0.02 - 1.2, corresponding to projected linear separations of 2 - 100 AU, and periods of 3 - 1000 years. We conclude that main sequence triple companions to CVs are not very common, but cannot rule out the presence of the faintest M dwarfs or close brown dwarf companions.
A total of 28 young nearby stars (ages $leq 60$,Myr) have been observed in the K$_{rm s}$-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion-candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed.
127 - Duy Cuong Nguyen 2011
We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial ve locity precision of ~80 m/s with slower rotators yielding better precision, in general. For 174 of these stars, we obtained multi-epoch data with sufficient time baselines to identify binaries based on radial velocity variations. We identified eight close binaries and four close triples, of which three and two, respectively, are new discoveries. The spectroscopic multiplicity fractions we find for Cha I (7%) and Tau-Aur (6%) are similar to each other, and to the results of field star surveys in the same mass and period regime. However, unlike the results from imaging surveys, the frequency of systems with close companions in our sample is not seen to depend on primary mass. Additionally, we do not find a strong correlation between accretion and close multiplicity. This implies that close companions are not likely the main source of the accretion shut down observed in weak-lined T Tauri stars. Our results also suggest that sufficient radial velocity precision can be achieved for at least a subset of slowly rotating young stars to search for hot Jupiter planets.
84 - Jorick S. Vink 2015
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn int o an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures Teff, (iii) an increase in the helium abundance Y, and finally (iv) the Eddington factor Gamma. Over the last couple of years, we have made a breakthrough in our understanding of Gamma-dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Ly-alpha and He II emitting galaxies.
For the past three years we have been conducting a survey for WR stars in the Large and Small Magellanic Clouds (LMC, SMC). Our previous work has resulted in the discovery of a new type of WR star in the LMC, which we are calling WN3/O3. These stars have the emission-line properties of a WN3 star (strong N V but no N IV), plus the absorption-line properties of an O3 star (Balmer hydrogen plus Pickering He II but no He I). Yet these stars are 15x fainter than an O3 V star would be by itself, ruling out these being WN3+O3 binaries. Here we report the discovery of two more members of this class, bringing the total number of these objects to 10, 6.5% of the LMCs total WR population. The optical spectra of nine of these WN3/O3s are virtually indistinguishable from each other, but one of the newly found stars is significantly different, showing a lower excitation emission and absorption spectrum (WN4/O4-ish). In addition, we have newly classified three unusual Of-type stars, including one with a strong C III 4650 line, and two rapidly rotating Oef stars. We also rediscovered a low mass x-ray binary, RX J0513.9-6951, and demonstrate its spectral variability. Finally, we discuss the spectra of ten low priority WR candidates that turned out not to have He II emission. These include both a Be star and a B[e] star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا