ﻻ يوجد ملخص باللغة العربية
Gravitationally bound companions to stars enable determinations of their masses, and offer clues to their formation, evolution and dynamical histories. So motivated, we have carried out a speckle imaging survey of eight of the nearest and brightest Wolf-Rayet (WR) stars to directly measure the frequency of their resolvable companions, and to search for much fainter companions than hitherto possible. We found one new, close companion to each of WR 113, WR 115 and WR 120 in the separation range 0.2 - 1.2. Our results provide more evidence that similar-brightness, close companions to WR stars are common. More remarkably, they also demonstrate that the predicted, but much fainter and thus elusive companions to WR stars are now within reach of modern speckle cameras on 8m class telescopes by finding the first example. The new companion to WR 113 is just 1.16 distant from it, and is 8 magnitudes fainter than the WR star. The empirical probability of a chance line-of-sight of the faint companion at the position of WR 113 is < 0.5%, though we cannot yet prove or disprove if the two stars are gravitationally bound. If these three new detections are physical companions we suggest, based on their narrowband magnitudes, colors, reddenings and GAIA distances that the companions to WR113, WR 115 and WR 120 are an F-type dwarf, an early B-type dwarf, and a WNE-type WR star, respectively.
The orbital periods of most eclipsing cataclysmic binaries are not undergoing linear secular decreases of order a few parts per billion as expected from simple theory. Instead, they show several parts per million increases and decreases on timescales
A total of 28 young nearby stars (ages $leq 60$,Myr) have been observed in the K$_{rm s}$-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and
We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial ve
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn int
For the past three years we have been conducting a survey for WR stars in the Large and Small Magellanic Clouds (LMC, SMC). Our previous work has resulted in the discovery of a new type of WR star in the LMC, which we are calling WN3/O3. These stars