ﻻ يوجد ملخص باللغة العربية
For the past three years we have been conducting a survey for WR stars in the Large and Small Magellanic Clouds (LMC, SMC). Our previous work has resulted in the discovery of a new type of WR star in the LMC, which we are calling WN3/O3. These stars have the emission-line properties of a WN3 star (strong N V but no N IV), plus the absorption-line properties of an O3 star (Balmer hydrogen plus Pickering He II but no He I). Yet these stars are 15x fainter than an O3 V star would be by itself, ruling out these being WN3+O3 binaries. Here we report the discovery of two more members of this class, bringing the total number of these objects to 10, 6.5% of the LMCs total WR population. The optical spectra of nine of these WN3/O3s are virtually indistinguishable from each other, but one of the newly found stars is significantly different, showing a lower excitation emission and absorption spectrum (WN4/O4-ish). In addition, we have newly classified three unusual Of-type stars, including one with a strong C III 4650 line, and two rapidly rotating Oef stars. We also rediscovered a low mass x-ray binary, RX J0513.9-6951, and demonstrate its spectral variability. Finally, we discuss the spectra of ten low priority WR candidates that turned out not to have He II emission. These include both a Be star and a B[e] star.
Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the de
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn int
Aims: Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods: For the quantitative analysis of the wind-dominated emission-line spectra, we employ t
Wolf-Rayet stars are advanced evolutionary stages of massive stars. Despite their large mass-loss rates and high wind velocities, none of them display a bow shock, although a fraction of them are classified as runaway. Our 2.5-D numerical simulations
We have initiated a survey aimed at locating a nearly complete sample of classical symbiotic stars (SySt) in the Magellanic Clouds. Such a sample is nearly impossible to obtain in the Milky Way, and is essential to constrain the formation, evolution