ترغب بنشر مسار تعليمي؟ اضغط هنا

Agile, Antifragile, Artificial-Intelligence-Enabled, Command and Control

179   0   0.0 ( 0 )
 نشر من قبل Jacob Simpson
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.



قيم البحث

اقرأ أيضاً

Central to the concept of multi-domain operations (MDO) is the utilization of an intelligence, surveillance, and reconnaissance (ISR) network consisting of overlapping systems of remote and autonomous sensors, and human intelligence, distributed amon g multiple partners. Realising this concept requires advancement in both artificial intelligence (AI) for improved distributed data analytics and intelligence augmentation (IA) for improved human-machine cognition. The contribution of this paper is threefold: (1) we map the coalition situational understanding (CSU) concept to MDO ISR requirements, paying particular attention to the need for assured and explainable AI to allow robust human-machine decision-making where assets are distributed among multiple partners; (2) we present illustrative vignettes for AI and IA in MDO ISR, including human-machine teaming, dense urban terrain analysis, and enhanced asset interoperability; (3) we appraise the state-of-the-art in explainable AI in relation to the vignettes with a focus on human-machine collaboration to achieve more rapid and agile coalition decision-making. The union of these three elements is intended to show the potential value of a CSU approach in the context of MDO ISR, grounded in three distinct use cases, highlighting how the need for explainability in the multi-partner coalition setting is key.
Live Action Role-Playing (LARP) games and similar experiences are becoming a popular game genre. Here, we discuss how artificial intelligence techniques, particularly those commonly used in AI for Games, could be applied to LARP. We discuss the speci fic properties of LARP that make it a surprisingly suitable application field, and provide a brief overview of some existing approaches. We then outline several directions where utilizing AI seems beneficial, by both making LARPs easier to organize, and by enhancing the player experience with elements not possible without AI.
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif icial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.
249 - Han Yu , Zhiqi Shen , Chunyan Miao 2018
As artificial intelligence (AI) systems become increasingly ubiquitous, the topic of AI governance for ethical decision-making by AI has captured public imagination. Within the AI research community, this topic remains less familiar to many researche rs. In this paper, we complement existing surveys, which largely focused on the psychological, social and legal discussions of the topic, with an analysis of recent advances in technical solutions for AI governance. By reviewing publications in leading AI conferences including AAAI, AAMAS, ECAI and IJCAI, we propose a taxonomy which divides the field into four areas: 1) exploring ethical dilemmas; 2) individual ethical decision frameworks; 3) collective ethical decision frameworks; and 4) ethics in human-AI interactions. We highlight the intuitions and key techniques used in each approach, and discuss promising future research directions towards successful integration of ethical AI systems into human societies.
The ability to use symbols is the pinnacle of human intelligence, but has yet to be fully replicated in machines. Here we argue that the path towards symbolically fluent artificial intelligence (AI) begins with a reinterpretation of what symbols are, how they come to exist, and how a system behaves when it uses them. We begin by offering an interpretation of symbols as entities whose meaning is established by convention. But crucially, something is a symbol only for those who demonstrably and actively participate in this convention. We then outline how this interpretation thematically unifies the behavioural traits humans exhibit when they use symbols. This motivates our proposal that the field place a greater emphasis on symbolic behaviour rather than particular computational mechanisms inspired by more restrictive interpretations of symbols. Finally, we suggest that AI research explore social and cultural engagement as a tool to develop the cognitive machinery necessary for symbolic behaviour to emerge. This approach will allow for AI to interpret something as symbolic on its own rather than simply manipulate things that are only symbols to human onlookers, and thus will ultimately lead to AI with more human-like symbolic fluency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا