ﻻ يوجد ملخص باللغة العربية
Central to the concept of multi-domain operations (MDO) is the utilization of an intelligence, surveillance, and reconnaissance (ISR) network consisting of overlapping systems of remote and autonomous sensors, and human intelligence, distributed among multiple partners. Realising this concept requires advancement in both artificial intelligence (AI) for improved distributed data analytics and intelligence augmentation (IA) for improved human-machine cognition. The contribution of this paper is threefold: (1) we map the coalition situational understanding (CSU) concept to MDO ISR requirements, paying particular attention to the need for assured and explainable AI to allow robust human-machine decision-making where assets are distributed among multiple partners; (2) we present illustrative vignettes for AI and IA in MDO ISR, including human-machine teaming, dense urban terrain analysis, and enhanced asset interoperability; (3) we appraise the state-of-the-art in explainable AI in relation to the vignettes with a focus on human-machine collaboration to achieve more rapid and agile coalition decision-making. The union of these three elements is intended to show the potential value of a CSU approach in the context of MDO ISR, grounded in three distinct use cases, highlighting how the need for explainability in the multi-partner coalition setting is key.
This paper presents a design of a non-player character (AI) for promoting balancedness in use of body segments when engaging in full-body motion gaming. In our experiment, we settle a battle between the proposed AI and a player by using FightingICE,
Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility th
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explai
A smart city can be seen as a framework, comprised of Information and Communication Technologies (ICT). An intelligent network of connected devices that collect data with their sensors and transmit them using cloud technologies in order to communicat
Artificial intelligence (AI) generally and machine learning (ML) specifically demonstrate impressive practical success in many different application domains, e.g. in autonomous driving, speech recognition, or recommender systems. Deep learning approa