ترغب بنشر مسار تعليمي؟ اضغط هنا

LM-Critic: Language Models for Unsupervised Grammatical Error Correction

185   0   0.0 ( 0 )
 نشر من قبل Michihiro Yasunaga
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Training a model for grammatical error correction (GEC) requires a set of labeled ungrammatical / grammatical sentence pairs, but manually annotating such pairs can be expensive. Recently, the Break-It-Fix-It (BIFI) framework has demonstrated strong results on learning to repair a broken program without any labeled examples, but this relies on a perfect critic (e.g., a compiler) that returns whether an example is valid or not, which does not exist for the GEC task. In this work, we show how to leverage a pretrained language model (LM) in defining an LM-Critic, which judges a sentence to be grammatical if the LM assigns it a higher probability than its local perturbations. We apply this LM-Critic and BIFI along with a large set of unlabeled sentences to bootstrap realistic ungrammatical / grammatical pairs for training a corrector. We evaluate our approach on GEC datasets across multiple domains (CoNLL-2014, BEA-2019, GMEG-wiki and GMEG-yahoo) and show that it outperforms existing methods in both the unsupervised setting (+7.7 F0.5) and the supervised setting (+0.5 F0.5).



قيم البحث

اقرأ أيضاً

Grammatical Error Correction (GEC) has been recently modeled using the sequence-to-sequence framework. However, unlike sequence transduction problems such as machine translation, GEC suffers from the lack of plentiful parallel data. We describe two a pproaches for generating large parallel datasets for GEC using publicly available Wikipedia data. The first method extracts source-target pairs from Wikipedia edit histories with minimal filtration heuristics, while the second method introduces noise into Wikipedia sentences via round-trip translation through bridge languages. Both strategies yield similar sized parallel corpora containing around 4B tokens. We employ an iterative decoding strategy that is tailored to the loosely supervised nature of our constructed corpora. We demonstrate that neural GEC models trained using either type of corpora give similar performance. Fine-tuning these models on the Lang-8 corpus and ensembling allows us to surpass the state of the art on both the CoNLL-2014 benchmark and the JFLEG task. We provide systematic analysis that compares the two approaches to data generation and highlights the effectiveness of ensembling.
We describe an approach to Grammatical Error Correction (GEC) that is effective at making use of models trained on large amounts of weakly supervised bitext. We train the Transformer sequence-to-sequence model on 4B tokens of Wikipedia revisions and employ an iterative decoding strategy that is tailored to the loosely-supervised nature of the Wikipedia training corpus. Finetuning on the Lang-8 corpus and ensembling yields an F0.5 of 58.3 on the CoNLL14 benchmark and a GLEU of 62.4 on JFLEG. The combination of weakly supervised training and iterative decoding obtains an F0.5 of 48.2 on CoNLL14 even without using any labeled GEC data.
88 - Xin Sun , Tao Ge , Furu Wei 2021
In this paper, we propose Shallow Aggressive Decoding (SAD) to improve the online inference efficiency of the Transformer for instantaneous Grammatical Error Correction (GEC). SAD optimizes the online inference efficiency for GEC by two innovations: 1) it aggressively decodes as many tokens as possible in parallel instead of always decoding only one token in each step to improve computational parallelism; 2) it uses a shallow decoder instead of the conventional Transformer architecture with balanced encoder-decoder depth to reduce the computational cost during inference. Experiments in both English and Chinese GEC benchmarks show that aggressive decoding could yield the same predictions as greedy decoding but with a significant speedup for online inference. Its combination with the shallow decoder could offer an even higher online inference speedup over the powerful Transformer baseline without quality loss. Not only does our approach allow a single model to achieve the state-of-the-art results in English GEC benchmarks: 66.4 F0.5 in the CoNLL-14 and 72.9 F0.5 in the BEA-19 test set with an almost 10x online inference speedup over the Transformer-big model, but also it is easily adapted to other languages. Our code is available at https://github.com/AutoTemp/Shallow-Aggressive-Decoding.
Recent progress in the task of Grammatical Error Correction (GEC) has been driven by addressing data sparsity, both through new methods for generating large and noisy pretraining data and through the publication of small and higher-quality finetuning data in the BEA-2019 shared task. Building upon recent work in Neural Machine Translation (NMT), we make use of both kinds of data by deriving example-level scores on our large pretraining data based on a smaller, higher-quality dataset. In this work, we perform an empirical study to discover how to best incorporate delta-log-perplexity, a type of example scoring, into a training schedule for GEC. In doing so, we perform experiments that shed light on the function and applicability of delta-log-perplexity. Models trained on scored data achieve state-of-the-art results on common GEC test sets.
We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an objective that considers a sentence-l evel, task-specific evaluation metric, avoiding the exposure bias issue in MLE. We demonstrate that NRL outperforms MLE both in human and automated evaluation metrics, achieving the state-of-the-art on a fluency-oriented GEC corpus.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا