ﻻ يوجد ملخص باللغة العربية
We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an objective that considers a sentence-level, task-specific evaluation metric, avoiding the exposure bias issue in MLE. We demonstrate that NRL outperforms MLE both in human and automated evaluation metrics, achieving the state-of-the-art on a fluency-oriented GEC corpus.
In this paper, we propose Shallow Aggressive Decoding (SAD) to improve the online inference efficiency of the Transformer for instantaneous Grammatical Error Correction (GEC). SAD optimizes the online inference efficiency for GEC by two innovations:
Grammatical Error Correction (GEC) has been recently modeled using the sequence-to-sequence framework. However, unlike sequence transduction problems such as machine translation, GEC suffers from the lack of plentiful parallel data. We describe two a
We propose a novel language-independent approach to improve the efficiency for Grammatical Error Correction (GEC) by dividing the task into two subtasks: Erroneous Span Detection (ESD) and Erroneous Span Correction (ESC). ESD identifies grammatically
We describe an approach to Grammatical Error Correction (GEC) that is effective at making use of models trained on large amounts of weakly supervised bitext. We train the Transformer sequence-to-sequence model on 4B tokens of Wikipedia revisions and
In Grammatical Error Correction (GEC), sequence labeling models enjoy fast inference compared to sequence-to-sequence models; however, inference in sequence labeling GEC models is an iterative process, as sentences are passed to the model for multipl