ﻻ يوجد ملخص باللغة العربية
Assume you have a 2-dimensional pizza with $2n$ ingredients that you want to share with your friend. For this you are allowed to cut the pizza using several straight cuts, and then give every second piece to your friend. You want to do this fairly, that is, your friend and you should each get exactly half of each ingredient. How many cuts do you need? It was recently shown using topological methods that $n$ cuts always suffice. In this work, we study the computational complexity of finding such $n$ cuts. Our main result is that this problem is PPA-complete when the ingredients are represented as point sets. For this, we give a new proof that for point sets $n$ cuts suffice, which does not use any topological methods. We further prove several hardness results as well as a higher-dimensional variant for the case where the ingredients are well-separated.
Assume you have a pizza consisting of four ingredients (e.g., bread, tomatoes, cheese and olives) that you want to share with your friend. You want to do this fairly, meaning that you and your friend should get the same amount of each ingredient. How
In this article, we provide new structural results and algorithms for the Homotopy Height problem. In broad terms, this problem quantifies how much a curve on a surface needs to be stretched to sweep continuously between two positions. More precisely
Let ${cal L}$ be an arrangement of $n$ lines in the Euclidean plane. The emph{$k$-level} of ${cal L}$ consists of all vertices $v$ of the arrangement which have exactly $k$ lines of ${cal L}$ passing below $v$. The complexity (the maximum size) of th
The classic Ham-Sandwich theorem states that for any $d$ measurable sets in $mathbb{R}^d$, there is a hyperplane that bisects them simultaneously. An extension by Barany, Hubard, and Jeronimo [DCG 2008] states that if the sets are convex and emph{wel
In a emph{fan-planar drawing} of a graph an edge can cross only edges with a common end-vertex. Fan-planar drawings have been recently introduced by Kaufmann and Ueckerdt, who proved that every $n$-vertex fan-planar drawing has at most $5n-10$ edges,