ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties and Complexity of Fan-Planarity

214   0   0.0 ( 0 )
 نشر من قبل Fabrizio Montecchiani
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In a emph{fan-planar drawing} of a graph an edge can cross only edges with a common end-vertex. Fan-planar drawings have been recently introduced by Kaufmann and Ueckerdt, who proved that every $n$-vertex fan-planar drawing has at most $5n-10$ edges, and that this bound is tight for $n geq 20$. We extend their result, both from the combinatorial and the algorithmic point of view. We prove tight bounds on the density of constrain

قيم البحث

اقرأ أيضاً

We introduce a new abstract graph game, Swap Planarity, where the goal is to reach a state without edge intersections and a move consists of swapping the locations of two vertices connected by an edge. We analyze this puzzle game using concepts from graph theory and graph drawing, computational geometry, and complexity. Furthermore, we specify quality criteria for puzzle instances, and describe a method to generate high-quality instances. We also report on experiments that show how well this generation process works.
A graph drawn in the plane with n vertices is k-fan-crossing free for k > 1 if there are no k+1 edges $g,e_1,...e_k$, such that $e_1,e_2,...e_k$ have a common endpoint and $g$ crosses all $e_i$. We prove a tight bound of 4n-8 on the maximum number of edges of a 2-fan-crossing free graph, and a tight 4n-9 bound for a straight-edge drawing. For k > 2, we prove an upper bound of 3(k-1)(n-2) edges. We also discuss generalizations to monotone graph properties.
Consider a graph with a rotation system, namely, for every vertex, a circular ordering of the incident edges. Given such a graph, an angle cover maps every vertex to a pair of consecutive edges in the ordering -- an angle -- such that each edge parti cipates in at least one such pair. We show that any graph of maximum degree 4 admits an angle cover, give a poly-time algorithm for deciding if a graph with no degree-3 vertices has an angle-cover, and prove that, given a graph of maximum degree 5, it is NP-hard to decide whether it admits an angle cover. We also consider extensions of the angle cover problem where every vertex selects a fixed number $a>1$ of angles or where an angle consists of more than two consecutive edges. We show an application of angle covers to the problem of deciding if the 2-blowup of a planar graph has isomorphic thickness 2.
In this article, we provide new structural results and algorithms for the Homotopy Height problem. In broad terms, this problem quantifies how much a curve on a surface needs to be stretched to sweep continuously between two positions. More precisely , given two homotopic curves $gamma_1$ and $gamma_2$ on a combinatorial (say, triangulated) surface, we investigate the problem of computing a homotopy between $gamma_1$ and $gamma_2$ where the length of the longest intermediate curve is minimized. Such optimal homotopies are relevant for a wide range of purposes, from very theoretical questions in quantitative homotopy theory to more practical applications such as similarity measures on meshes and graph searching problems. We prove that Homotopy Height is in the complexity class NP, and the corresponding exponential algorithm is the best one known for this problem. This result builds on a structural theorem on monotonicity of optimal homotopies, which is proved in a companion paper. Then we show that this problem encompasses the Homotopic Frechet distance problem which we therefore also establish to be in NP, answering a question which has previously been considered in several different settings. We also provide an O(log n)-approximation algorithm for Homotopy Height on surfaces by adapting an earlier algorithm of Har-Peled, Nayyeri, Salvatipour and Sidiropoulos in the planar setting.
244 - Patrick Schnider 2021
Assume you have a 2-dimensional pizza with $2n$ ingredients that you want to share with your friend. For this you are allowed to cut the pizza using several straight cuts, and then give every second piece to your friend. You want to do this fairly, t hat is, your friend and you should each get exactly half of each ingredient. How many cuts do you need? It was recently shown using topological methods that $n$ cuts always suffice. In this work, we study the computational complexity of finding such $n$ cuts. Our main result is that this problem is PPA-complete when the ingredients are represented as point sets. For this, we give a new proof that for point sets $n$ cuts suffice, which does not use any topological methods. We further prove several hardness results as well as a higher-dimensional variant for the case where the ingredients are well-separated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا