ترغب بنشر مسار تعليمي؟ اضغط هنا

Online k-Way Matching with Delays and the H-Metric

127   0   0.0 ( 0 )
 نشر من قبل Darya Melnyk
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study $k$-Way Min-cost Perfect Matching with Delays - the $k$-MPMD problem. This problem considers a metric space with $n$ nodes. Requests arrive at these nodes in an online fashion. The task is to match these requests into sets of exactly $k$, such that the space and time cost of all matched requests are minimized. The notion of the space cost requires a definition of an underlying metric space that gives distances of subsets of $k$ elements. For $k>2$, the task of finding a suitable metric space is at the core of our problem: We show that for some known generalizations to $k=3$ points, such as the $2$-metric and the $D$-metric, there exists no competitive randomized algorithm for the $3$-MPMD problem. The $G$-metrics are defined for 3 points and allows for a competitive algorithm for the $3$-MPMD problem. For $k>3$ points, there exist two generalizations of the $G$-metrics known as $n$- and $K$-metrics. We show that neither the $n$-metrics nor the $K$-metrics can be used for the $k$-MPMD problem. On the positive side, we introduce the $H$-metrics, the first metrics to allow for a solution of the $k$-MPMD problem for all $k$. In order to devise an online algorithm for the $k$-MPMD problem on the $H$-metrics, we embed the $H$-metric into trees with an $O(log n)$ distortion. Based on this embedding result, we extend the algorithm proposed by Azar et al. (2017) and achieve a competitive ratio of $O(log n)$ for the $k$-MPMD problem.

قيم البحث

اقرأ أيضاً

We study an online hypergraph matching problem with delays, motivated by ridesharing applications. In this model, users enter a marketplace sequentially, and are willing to wait up to $d$ timesteps to be matched, after which they will leave the syste m in favor of an outside option. A platform can match groups of up to $k$ users together, indicating that they will share a ride. Each group of users yields a match value depending on how compatible they are with one another. As an example, in ridesharing, $k$ is the capacity of the service vehicles, and $d$ is the amount of time a user is willing to wait for a driver to be matched to them. We present results for both the utility maximization and cost minimization variants of the problem. In the utility maximization setting, the optimal competitive ratio is $frac{1}{d}$ whenever $k geq 3$, and is achievable in polynomial-time for any fixed $k$. In the cost minimization variation, when $k = 2$, the optimal competitive ratio for deterministic algorithms is $frac{3}{2}$ and is achieved by a polynomial-time thresholding algorithm. When $k>2$, we show that a polynomial-time randomized batching algorithm is $(2 - frac{1}{d}) log k$-competitive, and it is NP-hard to achieve a competitive ratio better than $log k - O (log log k)$.
We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution ov er the points. Each request has to be matched to a free server, with cost equal to the distance. The goal is to minimize the expected total cost of the matching. Such stochastic arrival models have been widely studied for the maximization variants of the online matching problem; however, the only known result for the minimization problem is a tight $O(log n)$-competitiveness for the random-order arrival model. This is in contrast with the adversarial model, where an optimal competitive ratio of $O(log n)$ has long been conjectured and remains a tantalizing open question. In this paper, we show improved results in the i.i.d arrival model. We show how the i.i.d model can be used to give substantially better algorithms: our main result is an $O((log log log n)^2)$-competitive algorithm in this model. Along the way we give a $9$-competitive algorithm for the line and tree metrics. Both results imply a strict separation between the i.i.d model and the adversarial and random order models, both for general metrics and these much-studied metrics.
In the classical Online Metric Matching problem, we are given a metric space with $k$ servers. A collection of clients arrive in an online fashion, and upon arrival, a client should irrevocably be matched to an as-yet-unmatched server. The goal is to find an online matching which minimizes the total cost, i.e., the sum of distances between each client and the server it is matched to. We know deterministic algorithms~cite{KP93,khuller1994line} that achieve a competitive ratio of $2k-1$, and this bound is tight for deterministic algorithms. The problem has also long been considered in specialized metrics such as the line metric or metrics of bounded doubling dimension, with the current best result on a line metric being a deterministic $O(log k)$ competitive algorithm~cite{raghvendra2018optimal}. Obtaining (or refuting) $O(log k)$-competitive algorithms in general metrics and constant-competitive algorithms on the line metric have been long-standing open questions in this area. In this paper, we investigate the robustness of these lower bounds by considering the Online Metric Matching with Recourse problem where we are allowed to change a small number of previous assignments upon arrival of a new client. Indeed, we show that a small logarithmic amount of recourse can significantly improve the quality of matchings we can maintain. For general metrics, we show a simple emph{deterministic} $O(log k)$-competitive algorithm with $O(log k)$-amortized recourse, an exponential improvement over the $2k-1$ lower bound when no recourse is allowed. We next consider the line metric, and present a deterministic algorithm which is $3$-competitive and has $O(log k)$-recourse, again a substantial improvement over the best known $O(log k)$-competitive algorithm when no recourse is allowed.
Machine-learned predictors, although achieving very good results for inputs resembling training data, cannot possibly provide perfect predictions in all situations. Still, decision-making systems that are based on such predictors need not only to ben efit from good predictions but also to achieve a decent performance when the predictions are inadequate. In this paper, we propose a prediction setup for arbitrary metrical task systems (MTS) (e.g., caching, k-server and convex body chasing) and online matching on the line. We utilize results from the theory of online algorithms to show how to make the setup robust. Specifically for caching, we present an algorithm whose performance, as a function of the prediction error, is exponentially better than what is achievable for general MTS. Finally, we present an empirical evaluation of our methods on real world datasets, which suggests practicality.
Online bipartite matching with edge arrivals remained a major open question for a long time until a recent negative result by [Gamlath et al. FOCS 2019], who showed that no online policy is better than the straightforward greedy algorithm, i.e., no o nline algorithm has a worst-case competitive ratio better than $0.5$. In this work, we consider the bipartite matching problem with edge arrivals in a natural stochastic framework, i.e., Bayesian setting where each edge of the graph is independently realized according to a known probability distribution. We focus on a natural class of prune & greedy online policies motivated by practical considerations from a multitude of online matching platforms. Any prune & greedy algorithm consists of two stages: first, it decreases the probabilities of some edges in the stochastic instance and then runs greedy algorithm on the pruned graph. We propose prune & greedy algorithms that are $0.552$-competitive on the instances that can be pruned to a $2$-regular stochastic bipartite graph, and $0.503$-competitive on arbitrary bipartite graphs. The algorithms and our analysis significantly deviate from the prior work. We first obtain analytically manageable lower bound on the size of the matching, which leads to a non linear optimization problem. We further reduce this problem to a continuous optimization with a constant number of parameters that can be solved using standard software tools.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا