ﻻ يوجد ملخص باللغة العربية
In this paper, we study $k$-Way Min-cost Perfect Matching with Delays - the $k$-MPMD problem. This problem considers a metric space with $n$ nodes. Requests arrive at these nodes in an online fashion. The task is to match these requests into sets of exactly $k$, such that the space and time cost of all matched requests are minimized. The notion of the space cost requires a definition of an underlying metric space that gives distances of subsets of $k$ elements. For $k>2$, the task of finding a suitable metric space is at the core of our problem: We show that for some known generalizations to $k=3$ points, such as the $2$-metric and the $D$-metric, there exists no competitive randomized algorithm for the $3$-MPMD problem. The $G$-metrics are defined for 3 points and allows for a competitive algorithm for the $3$-MPMD problem. For $k>3$ points, there exist two generalizations of the $G$-metrics known as $n$- and $K$-metrics. We show that neither the $n$-metrics nor the $K$-metrics can be used for the $k$-MPMD problem. On the positive side, we introduce the $H$-metrics, the first metrics to allow for a solution of the $k$-MPMD problem for all $k$. In order to devise an online algorithm for the $k$-MPMD problem on the $H$-metrics, we embed the $H$-metric into trees with an $O(log n)$ distortion. Based on this embedding result, we extend the algorithm proposed by Azar et al. (2017) and achieve a competitive ratio of $O(log n)$ for the $k$-MPMD problem.
We study an online hypergraph matching problem with delays, motivated by ridesharing applications. In this model, users enter a marketplace sequentially, and are willing to wait up to $d$ timesteps to be matched, after which they will leave the syste
We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution ov
In the classical Online Metric Matching problem, we are given a metric space with $k$ servers. A collection of clients arrive in an online fashion, and upon arrival, a client should irrevocably be matched to an as-yet-unmatched server. The goal is to
Machine-learned predictors, although achieving very good results for inputs resembling training data, cannot possibly provide perfect predictions in all situations. Still, decision-making systems that are based on such predictors need not only to ben
Online bipartite matching with edge arrivals remained a major open question for a long time until a recent negative result by [Gamlath et al. FOCS 2019], who showed that no online policy is better than the straightforward greedy algorithm, i.e., no o