ﻻ يوجد ملخص باللغة العربية
Machine-learned predictors, although achieving very good results for inputs resembling training data, cannot possibly provide perfect predictions in all situations. Still, decision-making systems that are based on such predictors need not only to benefit from good predictions but also to achieve a decent performance when the predictions are inadequate. In this paper, we propose a prediction setup for arbitrary metrical task systems (MTS) (e.g., caching, k-server and convex body chasing) and online matching on the line. We utilize results from the theory of online algorithms to show how to make the setup robust. Specifically for caching, we present an algorithm whose performance, as a function of the prediction error, is exponentially better than what is achievable for general MTS. Finally, we present an empirical evaluation of our methods on real world datasets, which suggests practicality.
In this paper, we initiate the study of the weighted paging problem with predictions. This continues the recent line of work in online algorithms with predictions, particularly that of Lykouris and Vassilvitski (ICML 2018) and Rohatgi (SODA 2020) on
We introduce a new model of computation: the online LOCAL model (OLOCAL). In this model, the adversary reveals the nodes of the input graph one by one, in the same way as in classical online algorithms, but for each new node the algorithm can also in
We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution ov
Online algorithms make decisions based on past inputs. In general, the decision may depend on the entire history of inputs. If many computers run the same online algorithm with the same input stream but are started at different times, they do not nec
In this paper, we study $k$-Way Min-cost Perfect Matching with Delays - the $k$-MPMD problem. This problem considers a metric space with $n$ nodes. Requests arrive at these nodes in an online fashion. The task is to match these requests into sets of