ترغب بنشر مسار تعليمي؟ اضغط هنا

Using optical clock transitions in Cu II and Yb III for time-keeping and search for new physics

194   0   0.0 ( 0 )
 نشر من قبل Saleh Allehabi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the $^1$S$_0 - ^3$D$_2$ and $^1$S$_0 - ^3$D$_3$ transitions in Cu II and the $^1$S$_0 - ^3$P$^{rm o}_2$ transition in Yb III as possible candidates for the optical clock transitions. A recently developed version of the configuration (CI) method, designed for a large number of electrons above closed-shell core, is used to carry out the calculation. We calculate excitation energies, transition rates, lifetimes, scalar static polarizabilities of the ground and clock states, and blackbody radiation shift. We demonstrate that the considered transitions have all features of the clock transition leading to prospects of highly accurate measurements. Search for new physics, such as time variation of the fine structure constant, is also investigated.

قيم البحث

اقرأ أيضاً

We study the prospects of using the electric quadrupole transitions from the ground states of Cu, Ag and Au to the metastable state $^2{rm D}_{5/2}$ as clock transitions in optical lattice clocks. We calculate lifetimes, transition rates, systematic shifts, and demonstrate that the fractional uncertainty of the clocks can be similar to what is achieved in the best current optical clocks. The use of these proposed clocks for the search of new physics, such as time variation of the fine structure constant, search for low-mass scalar dark matter, violation of Local Position Invariance and violation of Lorenz Invariance is discussed.
This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches fo r spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.
Recently, p-wave cold collisions were shown to dominate the density-dependent shift of the clock transition frequency in a 171Yb optical lattice clock. Here we demonstrate that by operating such a system at the proper excitation fraction, the cold co llision shift is canceled below the 5x10^{-18} fractional frequency level. We report inelastic two-body loss rates for 3P0-3P0 and 1S0-3P0 scattering. We also measure interaction shifts in an unpolarized atomic sample. Collision measurements for this spin-1/2 171Yb system are relevant for high performance optical clocks as well as strongly-interacting systems for quantum information and quantum simulation applications.
We present a novel method for engineering an optical clock transition that is robust against external field fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on the application of continuous driv ing fields to form a pair of dressed states essentially free of all relevant shifts. Specifically, the clock transition is robust to magnetic shifts, quadrupole and other tensor shifts, and amplitude fluctuations of the driving fields. The scheme is applicable to either a single ion or an ensemble of ions, and is relevant for several types of ions, such as $^{40}mathrm{Ca}^{+}$, $^{88}mathrm{Sr}^{+}$, $^{138}mathrm{Ba}^{+}$ and $^{176}mathrm{Lu}^{+}$. Taking a spherically symmetric Coulomb crystal formed by 400 $^{40}mathrm{Ca}^{+}$ ions as an example, we show through numerical simulations that the inhomogeneous linewidth of tens of Hertz in such a crystal together with linear Zeeman shifts of order 10~MHz are reduced to form a linewidth of around 1~Hz. We estimate a two-order-of-magnitude reduction in averaging time compared to state-of-the art single ion frequency references, assuming a probe laser fractional instability of $10^{-15}$. Furthermore, a statistical uncertainty reaching $2.9times 10^{-16}$ in 1~s is estimated for a cascaded clock scheme in which the dynamically decoupled Coulomb crystal clock stabilizes the interrogation laser for an $^{27}mathrm{Al}^{+}$ clock.
We developed a laser system for the spectroscopy of the clock transition in ytterbium (Yb) atoms at 578 nm based on an interference-filter stabilized external-cavity diode laser (IFDL) emitting at 1156 nm. Owing to the improved frequency-to-current r esponse of the laser-diode chip and the less sensitivity of the IFDL to mechanical perturbations, we succeeded in stabilizing the frequency to a high-finesse ultra-low-expansion glass cavity with a simple current feedback system. Using this laser system, we performed high-resolution clock spectroscopy of Yb and found that the linewidth of the stabilized laser was less than 320 Hz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا