ﻻ يوجد ملخص باللغة العربية
We study the prospects of using the electric quadrupole transitions from the ground states of Cu, Ag and Au to the metastable state $^2{rm D}_{5/2}$ as clock transitions in optical lattice clocks. We calculate lifetimes, transition rates, systematic shifts, and demonstrate that the fractional uncertainty of the clocks can be similar to what is achieved in the best current optical clocks. The use of these proposed clocks for the search of new physics, such as time variation of the fine structure constant, search for low-mass scalar dark matter, violation of Local Position Invariance and violation of Lorenz Invariance is discussed.
We study the $^1$S$_0 - ^3$D$_2$ and $^1$S$_0 - ^3$D$_3$ transitions in Cu II and the $^1$S$_0 - ^3$P$^{rm o}_2$ transition in Yb III as possible candidates for the optical clock transitions. A recently developed version of the configuration (CI) met
The classic metallurgical systems -- noble metal alloys -- that have formed the benchmark for various alloy theories, are revisited. First-principles fully relaxed general potential LAPW total energies of a few ordered structures are used as input to
We present density-functional results on the lifetime of the (111) surface state of the noble metals. We consider scattering on the Fermi surface caused by impurity atoms belonging to the 3d and 4sp series. The results are analyzed with respect to fi
Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios.
The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation