ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient Imitation Reinforcement Learning for Low Resource Relation Extraction

170   0   0.0 ( 0 )
 نشر من قبل Xuming Hu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-resource Relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce. Existing works either utilize self-training scheme to generate pseudo labels that will cause the gradual drift problem, or leverage meta-learning scheme which does not solicit feedback explicitly. To alleviate selection bias due to the lack of feedback loops in existing LRE learning paradigms, we developed a Gradient Imitation Reinforcement Learning method to encourage pseudo label data to imitate the gradient descent direction on labeled data and bootstrap its optimization capability through trial and error. We also propose a framework called GradLRE, which handles two major scenarios in low-resource relation extraction. Besides the scenario where unlabeled data is sufficient, GradLRE handles the situation where no unlabeled data is available, by exploiting a contextualized augmentation method to generate data. Experimental results on two public datasets demonstrate the effectiveness of GradLRE on low resource relation extraction when comparing with baselines.

قيم البحث

اقرأ أيضاً

68 - Manqing Dong , Chunguang Pan , 2021
Neural relation extraction models have shown promising results in recent years; however, the model performance drops dramatically given only a few training samples. Recent works try leveraging the advance in few-shot learning to solve the low resourc e problem, where they train label-agnostic models to directly compare the semantic similarities among context sentences in the embedding space. However, the label-aware information, i.e., the relation label that contains the semantic knowledge of the relation itself, is often neglected for prediction. In this work, we propose a framework considering both label-agnostic and label-aware semantic mapping information for low resource relation extraction. We show that incorporating the above two types of mapping information in both pretraining and fine-tuning can significantly improve the model performance on low-resource relation extraction tasks.
102 - Ning Ding , Xiaobin Wang , Yao Fu 2021
Recognizing relations between entities is a pivotal task of relational learning. Learning relation representations from distantly-labeled datasets is difficult because of the abundant label noise and complicated expressions in human language. This pa per aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data that are effective in different settings, including supervised, distantly supervised, and few-shot learning. Instead of solely relying on the supervision from noisy labels, we propose to learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations. Prototypes are representations in the feature space abstracting the essential semantics of relations between entities in sentences. We learn prototypes based on objectives with clear geometric interpretation, where the prototypes are unit vectors uniformly dispersed in a unit ball, and statement embeddings are centered at the end of their corresponding prototype vectors on the surface of the ball. This approach allows us to learn meaningful, interpretable prototypes for the final classification. Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art models. We further demonstrate the robustness of the encoder and the interpretability of prototypes with extensive experiments.
76 - Jianing Wang 2020
Distant supervision (DS) aims to generate large-scale heuristic labeling corpus, which is widely used for neural relation extraction currently. However, it heavily suffers from noisy labeling and long-tail distributions problem. Many advanced approac hes usually separately address two problems, which ignore their mutual interactions. In this paper, we propose a novel framework named RH-Net, which utilizes Reinforcement learning and Hierarchical relational searching module to improve relation extraction. We leverage reinforcement learning to instruct the model to select high-quality instances. We then propose the hierarchical relational searching module to share the semantics from correlative instances between data-rich and data-poor classes. During the iterative process, the two modules keep interacting to alleviate the noisy and long-tail problem simultaneously. Extensive experiments on widely used NYT data set clearly show that our method significant improvements over state-of-the-art baselines.
Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting triplets of aspect terms, their associated sentiments, and the opinion terms that provide evidence for the expressed sentiments. Previous approaches to ASTE usually simultaneously e xtract all three components or first identify the aspect and opinion terms, then pair them up to predict their sentiment polarities. In this work, we present a novel paradigm, ASTE-RL, by regarding the aspect and opinion terms as arguments of the expressed sentiment in a hierarchical reinforcement learning (RL) framework. We first focus on sentiments expressed in a sentence, then identify the target aspect and opinion terms for that sentiment. This takes into account the mutual interactions among the triplets components while improving exploration and sample efficiency. Furthermore, this hierarchical RLsetup enables us to deal with multiple and overlapping triplets. In our experiments, we evaluate our model on existing datasets from laptop and restaurant domains and show that it achieves state-of-the-art performance. The implementation of this work is publicly available at https://github.com/declare-lab/ASTE-RL.
Open relation extraction is the task of extracting open-domain relation facts from natural language sentences. Existing works either utilize heuristics or distant-supervised annotations to train a supervised classifier over pre-defined relations, or adopt unsupervised methods with additional assumptions that have less discriminative power. In this work, we proposed a self-supervised framework named SelfORE, which exploits weak, self-supervised signals by leveraging large pretrained language model for adaptive clustering on contextualized relational features, and bootstraps the self-supervised signals by improving contextualized features in relation classification. Experimental results on three datasets show the effectiveness and robustness of SelfORE on open-domain Relation Extraction when comparing with competitive baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا