ترغب بنشر مسار تعليمي؟ اضغط هنا

RH-Net: Improving Neural Relation Extraction via Reinforcement Learning and Hierarchical Relational Searching

77   0   0.0 ( 0 )
 نشر من قبل Jianing Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jianing Wang




اسأل ChatGPT حول البحث

Distant supervision (DS) aims to generate large-scale heuristic labeling corpus, which is widely used for neural relation extraction currently. However, it heavily suffers from noisy labeling and long-tail distributions problem. Many advanced approaches usually separately address two problems, which ignore their mutual interactions. In this paper, we propose a novel framework named RH-Net, which utilizes Reinforcement learning and Hierarchical relational searching module to improve relation extraction. We leverage reinforcement learning to instruct the model to select high-quality instances. We then propose the hierarchical relational searching module to share the semantics from correlative instances between data-rich and data-poor classes. During the iterative process, the two modules keep interacting to alleviate the noisy and long-tail problem simultaneously. Extensive experiments on widely used NYT data set clearly show that our method significant improvements over state-of-the-art baselines.

قيم البحث

اقرأ أيضاً

105 - Seongsik Park , Harksoo Kim 2021
Sentence-level relation extraction mainly aims to classify the relation between two entities in a sentence. The sentence-level relation extraction corpus often contains data that are difficult for the model to infer or noise data. In this paper, we p ropose a curriculum learning-based relation extraction model that splits data by difficulty and utilizes them for learning. In the experiments with the representative sentence-level relation extraction datasets, TACRED and Re-TACRED, the proposed method obtained an F1-score of 75.0% and 91.4% respectively, which are the state-of-the-art performance.
Open relation extraction is the task of extracting open-domain relation facts from natural language sentences. Existing works either utilize heuristics or distant-supervised annotations to train a supervised classifier over pre-defined relations, or adopt unsupervised methods with additional assumptions that have less discriminative power. In this work, we proposed a self-supervised framework named SelfORE, which exploits weak, self-supervised signals by leveraging large pretrained language model for adaptive clustering on contextualized relational features, and bootstraps the self-supervised signals by improving contextualized features in relation classification. Experimental results on three datasets show the effectiveness and robustness of SelfORE on open-domain Relation Extraction when comparing with competitive baselines.
Low-resource Relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce. Existing works either utilize self-training scheme to generate pseudo labels that will cause the gradual drift problem , or leverage meta-learning scheme which does not solicit feedback explicitly. To alleviate selection bias due to the lack of feedback loops in existing LRE learning paradigms, we developed a Gradient Imitation Reinforcement Learning method to encourage pseudo label data to imitate the gradient descent direction on labeled data and bootstrap its optimization capability through trial and error. We also propose a framework called GradLRE, which handles two major scenarios in low-resource relation extraction. Besides the scenario where unlabeled data is sufficient, GradLRE handles the situation where no unlabeled data is available, by exploiting a contextualized augmentation method to generate data. Experimental results on two public datasets demonstrate the effectiveness of GradLRE on low resource relation extraction when comparing with baselines.
Extracting relations is critical for knowledge base completion and construction in which distant supervised methods are widely used to extract relational facts automatically with the existing knowledge bases. However, the automatically constructed da tasets comprise amounts of low-quality sentences containing noisy words, which is neglected by current distant supervised methods resulting in unacceptable precisions. To mitigate this problem, we propose a novel word-level distant supervised approach for relation extraction. We first build Sub-Tree Parse(STP) to remove noisy words that are irrelevant to relations. Then we construct a neural network inputting the sub-tree while applying the entity-wise attention to identify the important semantic features of relational words in each instance. To make our model more robust against noisy words, we initialize our network with a priori knowledge learned from the relevant task of entity classification by transfer learning. We conduct extensive experiments using the corpora of New York Times(NYT) and Freebase. Experiments show that our approach is effective and improves the area of Precision/Recall(PR) from 0.35 to 0.39 over the state-of-the-art work.
Distant Supervised Relation Extraction (DSRE) is usually formulated as a problem of classifying a bag of sentences that contain two query entities, into the predefined relation classes. Most existing methods consider those relation classes as distinc t semantic categories while ignoring their potential connection to query entities. In this paper, we propose to leverage this connection to improve the relation extraction accuracy. Our key ideas are twofold: (1) For sentences belonging to the same relation class, the expression style, i.e. words choice, can vary according to the query entities. To account for this style shift, the model should adjust its parameters in accordance with entity types. (2) Some relation classes are semantically similar, and the entity types appear in one relation may also appear in others. Therefore, it can be trained cross different relation classes and further enhance those classes with few samples, i.e., long-tail classes. To unify these two arguments, we developed a novel Dynamic Neural Network for Relation Extraction (DNNRE). The network adopts a novel dynamic parameter generator that dynamically generates the network parameters according to the query entity types and relation classes. By using this mechanism, the network can simultaneously handle the style shift problem and enhance the prediction accuracy for long-tail classes. Through our experimental study, we demonstrate the effectiveness of the proposed method and show that it can achieve superior performance over the state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا