ﻻ يوجد ملخص باللغة العربية
Primordial black holes possibly formed in the early universe could provide a significant fraction of the dark matter and would be unique probes of inflation. A smoking gun for their discovery would be the detection of a subsolar mass compact object. We argue that extreme mass-ratio inspirals will be ideal to search for subsolar-mass black holes not only with LISA but also with third-generation ground-based detectors such as Cosmic Explorer and the Einstein Telescope. These sources can provide unparalleled measurements of the mass of the secondary object at subpercent level for primordial black holes as light as ${cal O}(0.01)M_odot$ up to luminosity distances around hundred megaparsec and few gigaparsec for LISA and Einstein Telescope, respectively, in a complementary frequency range. This would allow claiming, with very high statistical confidence, the detection of a subsolar-mass black hole, which would also provide a novel (and currently undetectable) family of sources for third-generation detectors.
We describe a new class of resonances for extreme mass-ratio inspirals (EMRIs): tidal resonances, induced by the tidal field of nearby stars or stellar-mass black holes. A tidal resonance can be viewed as a general relativistic extension of the Kozai
The extreme-mass-ratio inspirals (EMRIs) of stellar mass compact objects into massive black holes in the centres of galaxies are an important source of low-frequency gravitational waves for space-based detectors. We discuss the prospects for detectin
We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid met
The inspiral of stellar-mass compact objects, like neutron stars or stellar-mass black holes, into supermassive black holes provides a wealth of information about the strong gravitational-field regime via the emission of gravitational waves. In order
Intermediate/Extreme mass ratio inspiral (IMRI/EMRI) system provides a good tool to test the nature of gravity in strong field. We construct the self-force and use the self-force method to generate accurate waveform templates for IMRIS/EMRIs on quasi