ﻻ يوجد ملخص باللغة العربية
Traditional fine-grained image classification generally requires abundant labeled samples to deal with the low inter-class variance but high intra-class variance problem. However, in many scenarios we may have limited samples for some novel sub-categories, leading to the fine-grained few shot learning (FG-FSL) setting. To address this challenging task, we propose a novel method named foreground object transformation (FOT), which is composed of a foreground object extractor and a posture transformation generator. The former aims to remove image background, which tends to increase the difficulty of fine-grained image classification as it amplifies the intra-class variance while reduces inter-class variance. The latter transforms the posture of the foreground object to generate additional samples for the novel sub-category. As a data augmentation method, FOT can be conveniently applied to any existing few shot learning algorithm and greatly improve its performance on FG-FSL tasks. In particular, in combination with FOT, simple fine-tuning baseline methods can be competitive with the state-of-the-art methods both in inductive setting and transductive setting. Moreover, FOT can further boost the performances of latest excellent methods and bring them up to the new state-of-the-art. In addition, we also show the effectiveness of FOT on general FSL tasks.
Affective computing and cognitive theory are widely used in modern human-computer interaction scenarios. Human faces, as the most prominent and easily accessible features, have attracted great attention from researchers. Since humans have rich emotio
The goal of few-shot fine-grained image classification is to recognize rarely seen fine-grained objects in the query set, given only a few samples of this class in the support set. Previous works focus on learning discriminative image features from a
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications, whereas the data of rare fine-grained categories is very limited. Therefore, we propose the few
Bilinear feature transformation has shown the state-of-the-art performance in learning fine-grained image representations. However, the computational cost to learn pairwise interactions between deep feature channels is prohibitively expensive, which
Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are favorably state-of-the-art on many t