ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and Contrastive Meta-Learning

110   0   0.0 ( 0 )
 نشر من قبل Jiahao Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications, whereas the data of rare fine-grained categories is very limited. Therefore, we propose the few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class. Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions: the inability to capture subtle action details and the inadequacy in learning from data with low inter-class variance. To tackle the first issue, a human vision inspired bidirectional attention module (BAM) is proposed. Combining top-down task-driven signals with bottom-up salient stimuli, BAM captures subtle action details by accurately highlighting informative spatio-temporal regions. To address the second issue, we introduce contrastive meta-learning (CML). Compared with the widely adopted ProtoNet-based method, CML generates more discriminative video representations for low inter-class variance data, since it makes full use of potential contrastive pairs in each training episode. Furthermore, to fairly compare different models, we establish specific benchmark protocols on two large-scale fine-grained action recognition datasets. Extensive experiments show that our method consistently achieves state-of-the-art performance across evaluated tasks.



قيم البحث

اقرأ أيضاً

Human pose is a useful feature for fine-grained sports action understanding. However, pose estimators are often unreliable when run on sports video due to domain shift and factors such as motion blur and occlusions. This leads to poor accuracy when d ownstream tasks, such as action recognition, depend on pose. End-to-end learning circumvents pose, but requires more labels to generalize. We introduce Video Pose Distillation (VPD), a weakly-supervised technique to learn features for new video domains, such as individual sports that challenge pose estimation. Under VPD, a student network learns to extract robust pose features from RGB frames in the sports video, such that, whenever pose is considered reliable, the features match the output of a pretrained teacher pose detector. Our strategy retains the best of both pose and end-to-end worlds, exploiting the rich visual patterns in raw video frames, while learning features that agree with the athletes pose and motion in the target video domain to avoid over-fitting to patterns unrelated to athletes motion. VPD features improve performance on few-shot, fine-grained action recognition, retrieval, and detection tasks in four real-world sports video datasets, without requiring additional ground-truth pose annotations.
Affective computing and cognitive theory are widely used in modern human-computer interaction scenarios. Human faces, as the most prominent and easily accessible features, have attracted great attention from researchers. Since humans have rich emotio ns and developed musculature, there exist a lot of fine-grained expressions in real-world applications. However, it is extremely time-consuming to collect and annotate a large number of facial images, of which may even require psychologists to correctly categorize them. To the best of our knowledge, the existing expression datasets are only limited to several basic facial expressions, which are not sufficient to support our ambitions in developing successful human-computer interaction systems. To this end, a novel Fine-grained Facial Expression Database - F2ED is contributed in this paper, and it includes more than 200k images with 54 facial expressions from 119 persons. Considering the phenomenon of uneven data distribution and lack of samples is common in real-world scenarios, we further evaluate several tasks of few-shot expression learning by virtue of our F2ED, which are to recognize the facial expressions given only few training instances. These tasks mimic human performance to learn robust and general representation from few examples. To address such few-shot tasks, we propose a unified task-driven framework - Compositional Generative Adversarial Network (Comp-GAN) learning to synthesize facial images and thus augmenting the instances of few-shot expression classes. Extensive experiments are conducted on F2ED and existing facial expression datasets, i.e., JAFFE and FER2013, to validate the efficacy of our F2ED in pre-training facial expression recognition network and the effectiveness of our proposed approach Comp-GAN to improve the performance of few-shot recognition tasks.
The lack of large-scale real datasets with annotations makes transfer learning a necessity for video activity understanding. We aim to develop an effective method for few-shot transfer learning for first-person action classification. We leverage inde pendently trained local visual cues to learn representations that can be transferred from a source domain, which provides primitive action labels, to a different target domain -- using only a handful of examples. Visual cues we employ include object-object interactions, hand grasps and motion within regions that are a function of hand locations. We employ a framework based on meta-learning to extract the distinctive and domain invariant components of the deployed visual cues. This enables transfer of action classification models across public datasets captured with diverse scene and action configurations. We present comparative results of our transfer learning methodology and report superior results over state-of-the-art action classification approaches for both inter-class and inter-dataset transfer.
Traditional fine-grained image classification generally requires abundant labeled samples to deal with the low inter-class variance but high intra-class variance problem. However, in many scenarios we may have limited samples for some novel sub-categ ories, leading to the fine-grained few shot learning (FG-FSL) setting. To address this challenging task, we propose a novel method named foreground object transformation (FOT), which is composed of a foreground object extractor and a posture transformation generator. The former aims to remove image background, which tends to increase the difficulty of fine-grained image classification as it amplifies the intra-class variance while reduces inter-class variance. The latter transforms the posture of the foreground object to generate additional samples for the novel sub-category. As a data augmentation method, FOT can be conveniently applied to any existing few shot learning algorithm and greatly improve its performance on FG-FSL tasks. In particular, in combination with FOT, simple fine-tuning baseline methods can be competitive with the state-of-the-art methods both in inductive setting and transductive setting. Moreover, FOT can further boost the performances of latest excellent methods and bring them up to the new state-of-the-art. In addition, we also show the effectiveness of FOT on general FSL tasks.
Named Entity Recognition (NER) in Few-Shot setting is imperative for entity tagging in low resource domains. Existing approaches only learn class-specific semantic features and intermediate representations from source domains. This affects generaliza bility to unseen target domains, resulting in suboptimal performances. To this end, we present CONTaiNER, a novel contrastive learning technique that optimizes the inter-token distribution distance for Few-Shot NER. Instead of optimizing class-specific attributes, CONTaiNER optimizes a generalized objective of differentiating between token categories based on their Gaussian-distributed embeddings. This effectively alleviates overfitting issues originating from training domains. Our experiments in several traditional test domains (OntoNotes, CoNLL03, WNUT 17, GUM) and a new large scale Few-Shot NER dataset (Few-NERD) demonstrate that on average, CONTaiNER outperforms previous methods by 3%-13% absolute F1 points while showing consistent performance trends, even in challenging scenarios where previous approaches could not achieve appreciable performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا