ﻻ يوجد ملخص باللغة العربية
Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are favorably state-of-the-art on many tasks. Most of the metric-based methods assume a single similarity measure and thus obtain a single feature space. However, if samples can simultaneously be well classified via two distinct similarity measures, the samples within a class can distribute more compactly in a smaller feature space, producing more discriminative feature maps. Motivated by this, we propose a so-called textit{Bi-Similarity Network} (textit{BSNet}) that consists of a single embedding module and a bi-similarity module of two similarity measures. After the support images and the query images pass through the convolution-based embedding module, the bi-similarity module learns feature maps according to two similarity measures of diverse characteristics. In this way, the model is enabled to learn more discriminative and less similarity-biased features from few shots of fine-grained images, such that the model generalization ability can be significantly improved. Through extensive experiments by slightly modifying established metric/similarity based networks, we show that the proposed approach produces a substantial improvement on several fine-grained image benchmark datasets. Codes are available at: https://github.com/spraise/BSNet
Metric-based few-shot fine-grained image classification (FSFGIC) aims to learn a transferable feature embedding network by estimating the similarities between query images and support classes from very few examples. In this work, we propose, for the
The goal of few-shot fine-grained image classification is to recognize rarely seen fine-grained objects in the query set, given only a few samples of this class in the support set. Previous works focus on learning discriminative image features from a
Deep Convolutional Neural Network (DCNN) and Transformer have achieved remarkable successes in image recognition. However, their performance in fine-grained image recognition is still difficult to meet the requirements of actual needs. This paper pro
While deep learning has been successfully applied to many real-world computer vision tasks, training robust classifiers usually requires a large amount of well-labeled data. However, the annotation is often expensive and time-consuming. Few-shot imag
Traditional fine-grained image classification generally requires abundant labeled samples to deal with the low inter-class variance but high intra-class variance problem. However, in many scenarios we may have limited samples for some novel sub-categ