ﻻ يوجد ملخص باللغة العربية
We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled caesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modelling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms. Our results emphasize the importance of minimizing strain during the self-assembly of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent emitters.
The family of organic-inorganic tri-halide perovskites including MA (MethylAmmonium)PbI$_{3}$, MAPbI$_{3-x}$Cl$_{x}$, FA (FormAmidinium)PbI$_{3}$ and FAPbBr$_{3}$ are having a tremendous impact on the field of photovoltaic cells due to their ease of
The development of next generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evid
Previous theoretical calculations show azetidinium has the right radial size to form a 3D perovskite with lead halides [1], and has been shown to impart, as the A-site cation of ABX3 unit, beneficial properties to ferroelectric perovskites [2]. Howev
Methylammonium lead iodide perovskites are considered direct bandgap semiconductors. Here we show that in fact they present a weakly indirect bandgap 60 meV below the direct bandgap transition. This is a consequence of spin-orbit coupling resulting i
Controlling grain orientations within polycrystalline all-inorganic halide perovskite solar cells can help increase conversion efficiencies toward their thermodynamic limits, however the forces governing texture formation are ambiguous. Using synchro