ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals

92   0   0.0 ( 0 )
 نشر من قبل Marcus Scheele
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled caesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modelling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms. Our results emphasize the importance of minimizing strain during the self-assembly of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent emitters.

قيم البحث

اقرأ أيضاً

The family of organic-inorganic tri-halide perovskites including MA (MethylAmmonium)PbI$_{3}$, MAPbI$_{3-x}$Cl$_{x}$, FA (FormAmidinium)PbI$_{3}$ and FAPbBr$_{3}$ are having a tremendous impact on the field of photovoltaic cells due to their ease of deposition and efficiencies, but device performance can be significanly affected by inhomogeneities. Here we report a study of temperature dependent micro-photoluminescence which shows a strong spatial inhomogeneity related to the presence of microcrystalline grains, which can be both light and dark. In all of the tri-iodide based materials there is evidence that the tetragonal to orthorhombic phase transition observed around 160K does not occur uniformly across the sample with domain formation related to the underlying microcrystallite grains, some of which remain in the high temperature, tetragonal, phase even at very low temperatures. At low temperature the tetragonal domains can be significantly influenced by local defects in the layers. In FAPbBr$_{3}$ a more macroscopic domain structure is observed with large numbers of grains forming phase correlated regions.
The development of next generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evid ent for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of time-resolved and temperature-dependent studies at Br K-edge and Pb L3-edge X-ray absorption with refined ab-initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties.
Previous theoretical calculations show azetidinium has the right radial size to form a 3D perovskite with lead halides [1], and has been shown to impart, as the A-site cation of ABX3 unit, beneficial properties to ferroelectric perovskites [2]. Howev er, there has been very limited research into its use as the cation in lead halide perovskites to date. In this communication we report the synthesis and characterization of azetidinium-based lead mixed halide perovskite colloidal nanocrystals. The mixed halide system is iodine and chlorine unlike other reported nanocrystals in the literature where the halide systems are either iodine/bromine or bromine/chlorine. UV-visible absorbance data, complemented with photoluminescence spectroscopy, reveals an indirect-bandgap of about 1.96 eV for our nanocrystals. Structural characterization using TEM shows two distinct interatomic distances (2.98 +/- 0.15 Angstroms and 3.43 +/- 0.16 Angstroms) and non-orthogonal lattice angles (approximately 112 degrees) intrinsic to the nanocrystals with a probable triclinic structure revealed by XRD. The presence of chlorine and iodine within the nanocrystals is confirmed by EDS spectroscopy. Finally, light-induced electron paramagnetic resonance (LEPR) spectroscopy with PCBM confirms the photoinduced charge transfer capabilities of the nanocrystals. The formation of such semiconducting lead mixed halide perovskite using azetidinium as the cation suggests a promising subclass of hybrid perovskites holding potential for optoelectronic applications such as in solar cells and photodetectors.
Methylammonium lead iodide perovskites are considered direct bandgap semiconductors. Here we show that in fact they present a weakly indirect bandgap 60 meV below the direct bandgap transition. This is a consequence of spin-orbit coupling resulting i n Rashba-splitting of the conduction band. The indirect nature of the bandgap explains the apparent contradiction of strong absorption and long charge carrier lifetime. Under hydrostatic pressure from ambient to 325 MPa, Rashba splitting is reduced due to a pressure induced ordering of the crystal structure. The nature of the bandgap becomes increasingly more direct, resulting in five times faster charge carrier recombination, and a doubling of the radiative efficiency. At hydrostatic pressures above 325 MPa, MAPI undergoes a reversible phase transition resulting in a purely direct bandgap semiconductor. The pressure-induced changes suggest epitaxial and synthetic routes to higher efficiency optoelectronic devices.
Controlling grain orientations within polycrystalline all-inorganic halide perovskite solar cells can help increase conversion efficiencies toward their thermodynamic limits, however the forces governing texture formation are ambiguous. Using synchro tron X-ray diffraction, we report meso-structure formation within polycrystalline CsPbI2.85Br0.15 powders as they cool from a high-temperature cubic perovskite ({alpha}-phase). Tetragonal distortions (b{eta}-phase) trigger preferential crystallographic alignment within polycrystalline ensembles, a feature we suggest is coordinated across multiple neighboring grains via interfacial forces that select for certain lattice distortions over others. External anisotropy is then imposed on polycrystalline thin films of orthorhombic ({gamma}-phase) CsPbI3-xBrx perovskite via substrate clamping, revealing two fundamental uniaxial texture formations; (i) I-rich films possess orthorhombic-like texture (<100> out-of-plane; <010> and <001> in-plane), while (ii) Br-rich films form tetragonal-like texture (<110> out-of-plane; <1-10> and <001> in-plane). In contrast to relatively uninfluential factors like the choice of substrate, film thickness and annealing temperature, Br incorporation modifies the {gamma}-CsPbI3-xBrx crystal structure by reducing the orthorhombic lattice distortion (making it more tetragonal-like) and governs the formation of the different, energetically favored textures within polycrystalline thin films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا