ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying Photoinduced Polaronic Distortions in Inorganic Lead Halide Perovskites Nanocrystals

434   0   0.0 ( 0 )
 نشر من قبل Giulia Mancini
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The development of next generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of time-resolved and temperature-dependent studies at Br K-edge and Pb L3-edge X-ray absorption with refined ab-initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties.

قيم البحث

اقرأ أيضاً

The formation of polarons due to the interaction between charge carriers and the crystal lattice has been proposed to have wide-ranging effects on charge carrier dynamics in lead--halide perovskites (LHPs). The hypothesis underlying many of those pro posals is that charge carriers are protected from scattering by their incorporation into polarons. We test that hypothesis by deriving expressions for the rates of scattering of polarons by polar-optical and acoustic phonons, and ionised impurities, which we compute for electrons in the LHPs MAPbI$_{3}$ , MAPbBr$_{3}$ and CsPbI$_{3}$. We then use the ensemble Monte Carlo method to compute electron-polaron distribution functions which satisfy a Boltzmann equation incorporating the same three scattering mechanisms. By carrying out analogous calculations for band electrons and comparing their results to those for polarons, we conclude that polaron formation impacts charge-carrier scattering rates and mobilities to a limited degree in LHPs, contrary to claims in the recent literature.
Excitation localization involving dynamic nanoscale distortions is a central aspect of photocatalysis, quantum materials and molecular optoelectronics. Experimental characterization of such distortions requires techniques sensitive to the formation o f point-defect-like local structural rearrangements in real time. Here, we visualize excitation-induced strain fields in a prototypical member of the lead halide perovskites via femtosecond resolution diffuse x-ray scattering measurements. This enables momentum-resolved phonon spectroscopy of the locally-distorted structure and reveals radially-expanding nanometer-scale elastic strain fields associated with the formation and relaxation of polarons in photoexcited perovskites. Quantitative estimates of the magnitude and the shape of this polaronic distortion are obtained, providing direct insights into the debated dynamic structural distortions in these materials. Optical pump-probe reflection spectroscopy corroborates these results and shows how these large polaronic distortions transiently modify the carrier effective mass, providing a unified picture of the coupled structural and electronic dynamics that underlie the unique optoelectronic functionality of the hybrid perovskites.
The acoustic phonons in the organic-inorganic lead halide perovskites have been reported to have anomalously short lifetimes over a large part of the Brillouin zone. The resulting shortened mean free paths of the phonons have been implicated as the o rigin of the low thermal conductivity. We apply neutron spectroscopy to show that the same acoustic phonon energy linewidth broadening (corresponding to shortened lifetimes) occurs in the fully inorganic CsPbBr$_{3}$ by comparing the results on the organic-inorganic CH$_{3}$NH$_{3}$PbCl$_{3}$. We investigate the critical dynamics near the three zone boundaries of the cubic $Pmoverline{3}m$ Brillouin zone of CsPbBr$_{3}$ and find energy and momentum broadened dynamics at momentum points where the Cs-site ($A$-site) motions contribute to the cross section. Neutron diffraction is used to confirm that both the Cs and Br sites have unusually large thermal displacements with an anisotropy that mirrors the low temperature structural distortions. The presence of an organic molecule is not necessary to disrupt the low-energy acoustic phonons at momentum transfers located away from the zone center in the lead halide perovskites and such damping may be driven by the large displacements or possibly disorder on the $A$ site.
Behaving like atomically-precise two-dimensional quantum wells with non-negligible dielectric contrast, the layered HOIPs have strong electronic interactions leading to tightly bound excitons with binding energies on the order of 500 meV. These stron g interactions suggest the possibility of larger excitonic complexes like trions and biexcitons, which are hard to study numerically due to the complexity of the layered HOIPs. Here, we propose and parameterize a model Hamiltonian for excitonic complexes in layered HOIPs and we study the correlated eigenfunctions of trions and biexcitons using a combination of diffusion Monte Carlo and very large variational calculations with explicitly correlated Gaussian basis functions. Binding energies and spatial structures of these complexes are presented as a function of the layer thickness. The trion and biexciton of the thinnest layered HOIP have binding energies of 35 meV and 44 meV, respectively, whereas a single exfoliated layer is predicted to have trions and biexcitons with equal binding enegies of 48 meV. We compare our findings to available experimental data and to that of other quasi-two-dimensional materials.
Hybrid organic-inorganic semiconductors feature complex lattice dynamics due to the ionic character of the crystal and the softness arising from non-covalent bonds between molecular moieties and the inorganic network. Here we establish that such dyna mic structural complexity in a prototypical two-dimensional lead iodide perovskite gives rise to the coexistence of diverse excitonic resonances, each with a distinct degree of polaronic character. By means of high-resolution resonant impulsive stimulated Raman spectroscopy, we identify vibrational wavepacket dynamics that evolve along different configurational coordinates for distinct excitons and photocarriers. Employing density functional theory calculations, we assign the observed coherent vibrational modes to various low-frequency ($lesssim 50$,cm$^{-1}$) optical phonons involving motion in the lead-iodide layers. We thus conclude that different excitons induce specific lattice reorganizations, which are signatures of polaronic binding. This insight on the energetic/configurational landscape involving globally neutral primary photoexcitations may be relevant to a broader class of emerging hybrid semiconductor materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا