ﻻ يوجد ملخص باللغة العربية
Controlling grain orientations within polycrystalline all-inorganic halide perovskite solar cells can help increase conversion efficiencies toward their thermodynamic limits, however the forces governing texture formation are ambiguous. Using synchrotron X-ray diffraction, we report meso-structure formation within polycrystalline CsPbI2.85Br0.15 powders as they cool from a high-temperature cubic perovskite ({alpha}-phase). Tetragonal distortions (b{eta}-phase) trigger preferential crystallographic alignment within polycrystalline ensembles, a feature we suggest is coordinated across multiple neighboring grains via interfacial forces that select for certain lattice distortions over others. External anisotropy is then imposed on polycrystalline thin films of orthorhombic ({gamma}-phase) CsPbI3-xBrx perovskite via substrate clamping, revealing two fundamental uniaxial texture formations; (i) I-rich films possess orthorhombic-like texture (<100> out-of-plane; <010> and <001> in-plane), while (ii) Br-rich films form tetragonal-like texture (<110> out-of-plane; <1-10> and <001> in-plane). In contrast to relatively uninfluential factors like the choice of substrate, film thickness and annealing temperature, Br incorporation modifies the {gamma}-CsPbI3-xBrx crystal structure by reducing the orthorhombic lattice distortion (making it more tetragonal-like) and governs the formation of the different, energetically favored textures within polycrystalline thin films.
Organic-inorganic coupling in the hybrid lead-halide perovskite is a central issue in rationalizing the outstanding photovoltaic performance of these emerging materials. Here we compare and contrast the evolution of structure and dynamics of the hybr
Inorganic lead halide perovskites are promising candidates for optoelectronic applications, due to their bandgap tunability, high photoluminescence quantum yield, and narrow emission line widths. In particular, they offer the possibility to vary the
Understanding the formation of lead halide (LH) perovskite solution precursors is crucial to gain insight into the evolution of these materials to thin films for solar cells. Using density-functional theory in conjunction with the polarizable continu
The development of next generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evid
The acoustic phonons in the organic-inorganic lead halide perovskites have been reported to have anomalously short lifetimes over a large part of the Brillouin zone. The resulting shortened mean free paths of the phonons have been implicated as the o