ﻻ يوجد ملخص باللغة العربية
We consider 3D free-boundary compressible ideal magnetohydrodynamic (MHD) system under the Rayleigh-Taylor sign condition. It describes the motion of a free-surface perfect conducting fluid in an electro-magnetic field. The local well-posedness was recently proved by Trakhinin and Wang [66] by using Nash-Moser iteration. In this paper, we prove the a priori estimates without loss of regularity for the free-boundary compressible MHD system in Lagrangian coordinates in anisotropic Sobolev space, with more regularity tangential to the boundary than in the normal direction. It is based on modified Alinhac good unknowns, which take into account the covariance under the change of coordinates to avoid the derivative loss; full utilization of the cancellation structures of MHD system, to turn normal derivatives into tangential ones; and delicate analysis in anisotropic Sobolev spaces. Our method is also completely applicable to compressible Euler equations and thus yields an alternative estimate for compressible Euler equations without the analysis of div-curl decomposition or the wave equation in Lindblad-Luo [42], that do not work for compressible MHD. To the best of our knowledge, we establish the first result on the energy estimates without loss of regularity for the free-boundary problem of compressible ideal MHD.
We prove the local well-posedness in Sobolev spaces of the free-boundary problem for compressible inviscid resistive isentropic MHD system under the Rayleigh-Taylor physical sign condition, which describes the motion of a free-boundary compressible p
We study the well-posedness theory for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations in a bounded domain. We express the magnetic field in terms of the velocity field and the deformation tensors in the La
The parabolic obstacle problem for the fractional Laplacian naturally arises in American option models when the assets prices are driven by pure jump Levy processes. In this paper we study the regularity of the free boundary. Our main result establis
We show that the solution of the free-boundary incompressible ideal magnetohydrodynamic (MHD) equations with surface tension converges to that of the free-boundary incompressible ideal MHD equations without surface tension given the Rayleigh-Taylor s
In the present paper, we show the ill-posedness of the free boundary problem of the incompressible ideal magnetohydrodynamics (MHD) equations in two spatial dimensions for any positive vacuum permeability $mu_0$, in Sobolev spaces. The analysis is uniform for any $mu_0>0$.