ﻻ يوجد ملخص باللغة العربية
The general problem of constructing confidence regions is unsolved in the sense that there is no algorithm that provides such a region with guaranteed coverage for an arbitrary parameter $psiinPsi.$ Moreover, even when such a region exists, it may be absurd in the sense that either the set $Psi$ or the null set $phi$ is reported with positive probability. An approach to the construction of such regions with guaranteed coverage and which avoids absurdity is applied here to several problems that have been discussed in the recent literature and for which some standard approaches produce absurd regions.
Results by van der Vaart (1991) from semi-parametric statistics about the existence of a non-zero Fisher information are reviewed in an infinite-dimensional non-linear Gaussian regression setting. Information-theoretically optimal inference on aspect
We consider the problem of constructing Bayesian based confidence sets for linear functionals in the inverse Gaussian white noise model. We work with a scale of Gaussian priors indexed by a regularity hyper-parameter and apply the data-driven (slight
Supersaturated design (SSD) has received much recent interest because of its potential in factor screening experiments. In this paper, we provide equivalent conditions for two columns to be fully aliased and consequently propose methods for construct
The recent paper Simple confidence intervals for MCMC without CLTs by J.S. Rosenthal, showed the derivation of a simple MCMC confidence interval using only Chebyshevs inequality, not CLT. That result required certain assumptions about how the estimat
Consider a linear regression model with independent and identically normally distributed random errors. Suppose that the parameter of interest is a specified linear combination of the regression parameters. We prove that the usual confidence interval