ترغب بنشر مسار تعليمي؟ اضغط هنا

On some information-theoretic aspects of non-linear statistical inverse problems

235   0   0.0 ( 0 )
 نشر من قبل Richard Nickl
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Results by van der Vaart (1991) from semi-parametric statistics about the existence of a non-zero Fisher information are reviewed in an infinite-dimensional non-linear Gaussian regression setting. Information-theoretically optimal inference on aspects of the unknown parameter is possible if and only if the adjoint of the linearisation of the regression map satisfies a certain range condition. It is shown that this range condition may fail in a commonly studied elliptic inverse problem with a divergence form equation, and that a large class of smooth linear functionals of the conductivity parameter cannot be estimated efficiently in this case. In particular, Gaussian `Bernstein von Mises-type approximations for Bayesian posterior distributions do not hold in this setting.



قيم البحث

اقرأ أيضاً

The general problem of constructing confidence regions is unsolved in the sense that there is no algorithm that provides such a region with guaranteed coverage for an arbitrary parameter $psiinPsi.$ Moreover, even when such a region exists, it may be absurd in the sense that either the set $Psi$ or the null set $phi$ is reported with positive probability. An approach to the construction of such regions with guaranteed coverage and which avoids absurdity is applied here to several problems that have been discussed in the recent literature and for which some standard approaches produce absurd regions.
181 - Vladimir Spokoiny 2019
Bayesian methods are actively used for parameter identification and uncertainty quantification when solving nonlinear inverse problems with random noise. However, there are only few theoretical results justifying the Bayesian approach. Recent papers, see e.g. cite{Nickl2017,lu2017bernsteinvon} and references therein, illustrate the main difficulties and challenges in studying the properties of the posterior distribution in the nonparametric setup. This paper offers a new approach for study the frequentist properties of the nonparametric Bayes procedures. The idea of the approach is to relax the nonlinear structural equation by introducing an auxiliary functional parameter and replacing the structural equation with a penalty and by imposing a prior on the auxiliary parameter. For the such extended model, we state sharp bounds on posterior concentration and on the accuracy of the penalized MLE and on Gaussian approximation of the posterior, and a number of further results. All the bounds are given in terms of effective dimension, and we show that the proposed calming device does not significantly affect this value.
The features of a logically sound approach to a theory of statistical reasoning are discussed. A particular approach that satisfies these criteria is reviewed. This is seen to involve selection of a model, model checking, elicitation of a prior, chec king the prior for bias, checking for prior-data conflict and estimation and hypothesis assessment inferences based on a measure of evidence. A long-standing anomalous example is resolved by this approach to inference and an application is made to a practical problem of considerable importance which, among other novel aspects of the analysis, involves the development of a relevant elicitation algorithm.
98 - Yulong Lu 2017
We prove a Bernstein-von Mises theorem for a general class of high dimensional nonlinear Bayesian inverse problems in the vanishing noise limit. We propose a sufficient condition on the growth rate of the number of unknown parameters under which the posterior distribution is asymptotically normal. This growth condition is expressed explicitly in terms of the model dimension, the degree of ill-posedness of the inverse problem and the noise parameter. The theoretical results are applied to a Bayesian estimation of the medium parameter in an elliptic problem.
We study the statistical properties of stochastic evolution equations driven by space-only noise, either additive or multiplicative. While forward problems, such as existence, uniqueness, and regularity of the solution, for such equations have been s tudied, little is known about inverse problems for these equations. We exploit the somewhat unusual structure of the observations coming from these equations that leads to an interesting interplay between classical and non-traditional statistical models. We derive several types of estimators for the drift and/or diffusion coefficients of these equations, and prove their relevant properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا