ترغب بنشر مسار تعليمي؟ اضغط هنا

Poincare series for modular graph forms at depth two. I. Seeds and Laplace systems

304   0   0.0 ( 0 )
 نشر من قبل Axel Kleinschmidt
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive new Poincare-series representations for infinite families of non-holomorphic modular invariant functions that include modular graph forms as they appear in the low-energy expansion of closed-string scattering amplitudes at genus one. The Poincare series are constructed from iterated integrals over single holomorphic Eisenstein series and their complex conjugates, decorated by suitable combinations of zeta values. We evaluate the Poincare sums over these iterated Eisenstein integrals of depth one and deduce new representations for all modular graph forms built from iterated Eisenstein integrals at depth two. In a companion paper, some of the Poincare sums over depth-one integrals going beyond modular graph forms will be described in terms of iterated integrals over holomorphic cusp forms and their L-values.



قيم البحث

اقرأ أيضاً

We continue the analysis of modular invariant functions, subject to inhomogeneous Laplace eigenvalue equations, that were determined in terms of Poincare series in a companion paper. The source term of the Laplace equation is a product of (derivative s of) two non-holomorphic Eisenstein series whence the modular invariants are assigned depth two. These modular invariant functions can sometimes be expressed in terms of single-valued iterated integrals of holomorphic Eisenstein series as they appear in generating series of modular graph forms. We show that the set of iterated integrals of Eisenstein series has to be extended to include also iterated integrals of holomorphic cusp forms to find expressions for all modular invariant functions of depth two. The coefficients of these cusp forms are identified as ratios of their L-values inside and outside the critical strip.
Elliptic modular graph functions and forms (eMGFs) are defined for arbitrary graphs as natural generalizations of modular graph functions and forms obtained by including the character of an Abelian group in their Kronecker--Eisenstein series. The sim plest examples of eMGFs are given by the Green function for a massless scalar field on the torus and the Zagier single-valued elliptic polylogarithms. More complicated eMGFs are produced by the non-separating degeneration of a higher genus surface to a genus one surface with punctures. eMGFs may equivalently be represented by multiple integrals over the torus of combinations of coefficients of the Kronecker--Eisenstein series, and may be assembled into generating series. These relations are exploited to derive holomorphic subgraph reduction formulas, as well as algebraic and differential identities between eMGFs and their generating series.
We study generating series of torus integrals that contain all so-called modular graph forms relevant for massless one-loop closed-string amplitudes. By analysing the differential equation of the generating series we construct a solution for its low- energy expansion to all orders in the inverse string tension $alpha$. Our solution is expressed through initial data involving multiple zeta values and certain real-analytic functions of the modular parameter of the torus. These functions are built from real and imaginary parts of holomorphic iterated Eisenstein integrals and should be closely related to Browns recent construction of real-analytic modular forms. We study the properties of our real-analytic objects in detail and give explicit examples to a fixed order in the $alpha$-expansion. In particular, our solution allows for a counting of linearly independent modular graph forms at a given weight, confirming previous partial results and giving predictions for higher, hitherto unexplored weights. It also sheds new light on the topic of uniform transcendentality of the $alpha$-expansion.
This paper investigates the relations between modular graph forms, which are generalizations of the modular graph functions that were introduced in earlier papers motivated by the structure of the low energy expansion of genus-one Type II superstring amplitudes. These modular graph forms are multiple sums associated with decorated Feynman graphs on the world-sheet torus. The action of standard differential operators on these modular graph forms admits an algebraic representation on the decorations. First order differential operators are used to map general non-holomorphic modular graph functions to holomorphic modular forms. This map is used to provide proofs of the identities between modular graph functions for weight less than six conjectured in earlier work, by mapping these identities to relations between holomorphic modular forms which are proven by holomorphic methods. The map is further used to exhibit the structure of identities at arbitrary weight.
125 - Jan E. Gerken 2020
Modular graph forms (MGFs) are a class of non-holomorphic modular forms which naturally appear in the low-energy expansion of closed-string genus-one amplitudes and have generated considerable interest from pure mathematicians. MGFs satisfy numerous non-trivial algebraic- and differential relations which have been studied extensively in the literature and lead to significant simplifications. In this paper, we systematically combine these relations to obtain basis decompositions of all two- and three-point MGFs of total modular weight $w+bar{w}leq12$, starting from just two well-known identities for banana graphs. Furthermore, we study previously known relations in the integral representation of MGFs, leading to a new understanding of holomorphic subgraph reduction as Fay identities of Kronecker--Eisenstein series and opening the door towards decomposing divergent graphs. We provide a computer implementation for the manipulation of MGFs in the form of the $texttt{Mathematica}$ package $texttt{ModularGraphForms}$ which includes the basis decompositions obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا