ﻻ يوجد ملخص باللغة العربية
Modular graph forms (MGFs) are a class of non-holomorphic modular forms which naturally appear in the low-energy expansion of closed-string genus-one amplitudes and have generated considerable interest from pure mathematicians. MGFs satisfy numerous non-trivial algebraic- and differential relations which have been studied extensively in the literature and lead to significant simplifications. In this paper, we systematically combine these relations to obtain basis decompositions of all two- and three-point MGFs of total modular weight $w+bar{w}leq12$, starting from just two well-known identities for banana graphs. Furthermore, we study previously known relations in the integral representation of MGFs, leading to a new understanding of holomorphic subgraph reduction as Fay identities of Kronecker--Eisenstein series and opening the door towards decomposing divergent graphs. We provide a computer implementation for the manipulation of MGFs in the form of the $texttt{Mathematica}$ package $texttt{ModularGraphForms}$ which includes the basis decompositions obtained.
This paper investigates the relations between modular graph forms, which are generalizations of the modular graph functions that were introduced in earlier papers motivated by the structure of the low energy expansion of genus-one Type II superstring
Elliptic modular graph functions and forms (eMGFs) are defined for arbitrary graphs as natural generalizations of modular graph functions and forms obtained by including the character of an Abelian group in their Kronecker--Eisenstein series. The sim
In this thesis, we investigate the low-energy expansion of scattering amplitudes of closed strings at one-loop level (i.e. at genus one) in a ten-dimensional Minkowski background using a special class of functions called modular graph forms. These al
We continue the analysis of modular invariant functions, subject to inhomogeneous Laplace eigenvalue equations, that were determined in terms of Poincare series in a companion paper. The source term of the Laplace equation is a product of (derivative
Modular graph forms are a class of modular covariant functions which appear in the genus-one contribution to the low-energy expansion of closed string scattering amplitudes. Modular graph forms with holomorphic subgraphs enjoy the simplifying propert