ترغب بنشر مسار تعليمي؟ اضغط هنا

Identities between Modular Graph Forms

92   0   0.0 ( 0 )
 نشر من قبل Eric D'Hoker
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates the relations between modular graph forms, which are generalizations of the modular graph functions that were introduced in earlier papers motivated by the structure of the low energy expansion of genus-one Type II superstring amplitudes. These modular graph forms are multiple sums associated with decorated Feynman graphs on the world-sheet torus. The action of standard differential operators on these modular graph forms admits an algebraic representation on the decorations. First order differential operators are used to map general non-holomorphic modular graph functions to holomorphic modular forms. This map is used to provide proofs of the identities between modular graph functions for weight less than six conjectured in earlier work, by mapping these identities to relations between holomorphic modular forms which are proven by holomorphic methods. The map is further used to exhibit the structure of identities at arbitrary weight.

قيم البحث

اقرأ أيضاً

Elliptic modular graph functions and forms (eMGFs) are defined for arbitrary graphs as natural generalizations of modular graph functions and forms obtained by including the character of an Abelian group in their Kronecker--Eisenstein series. The sim plest examples of eMGFs are given by the Green function for a massless scalar field on the torus and the Zagier single-valued elliptic polylogarithms. More complicated eMGFs are produced by the non-separating degeneration of a higher genus surface to a genus one surface with punctures. eMGFs may equivalently be represented by multiple integrals over the torus of combinations of coefficients of the Kronecker--Eisenstein series, and may be assembled into generating series. These relations are exploited to derive holomorphic subgraph reduction formulas, as well as algebraic and differential identities between eMGFs and their generating series.
125 - Eric DHoker , Justin Kaidi 2016
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues for the extended family of dihedral modular graph functions are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues $s(s-1)$ for positive integers $s$ bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.
Higher genus modular graph tensors map Feynman graphs to functions on the Torelli space of genus-$h$ compact Riemann surfaces which transform as tensors under the modular group $Sp(2h , mathbb Z)$, thereby generalizing a construction of Kawazumi. An infinite family of algebraic identities between one-loop and tree-level modular graph tensors are proven for arbitrary genus and arbitrary tensorial rank. We also derive a family of identities that apply to modular graph tensors of higher loop order.
Modular graph forms are a class of modular covariant functions which appear in the genus-one contribution to the low-energy expansion of closed string scattering amplitudes. Modular graph forms with holomorphic subgraphs enjoy the simplifying propert y that they may be reduced to sums of products of modular graph forms of strictly lower loop order. In the particular case of dihedral modular graph forms, a closed form expression for this holomorphic subgraph reduction was obtained previously by DHoker and Green. In the current work, we extend these results to trihedral modular graph forms. Doing so involves the identification of a modular covariant regularization scheme for certain conditionally convergent sums over discrete momenta, with some elements of the sum being excluded. The appropriate regularization scheme is identified for any number of exclusions, which in principle allows one to perform holomorphic subgraph reduction of higher-point modular graph forms with arbitrary holomorphic subgraphs.
93 - Jan E. Gerken 2020
In this thesis, we investigate the low-energy expansion of scattering amplitudes of closed strings at one-loop level (i.e. at genus one) in a ten-dimensional Minkowski background using a special class of functions called modular graph forms. These al low for a systematic evaluation of the low-energy expansion and satisfy many non-trivial algebraic and differential relations. We study these relations in detail, leading to basis decompositions for a large number of modular graph forms which greatly reduce the complexity of the expansions of the integrals appearing in the amplitude. One of the results of this thesis is a Mathematica package which automatizes these simplifications. We use these techniques to compute the leading low-energy orders of the scattering amplitude of four gluons in the heterotic string at one-loop level. Furthermore, we study a generating function which conjecturally contains the torus integrals of all perturbative closed-string theories. We write this generating function in terms of iterated integrals of holomorphic Eisenstein series and use this approach to arrive at a more rigorous characterization of the space of modular graph forms than was possible before. For tree-level string amplitudes, the single-valued map of multiple zeta values maps open-string amplitudes to closed-string amplitudes. The definition of a suitable one-loop generalization, a so-called elliptic single-valued map, is an active area of research and we provide a new perspective on this topic using our generating function of torus integrals. The original version of this thesis, as submitted in June 2020 to the Humboldt University Berlin, is available under the DOI 10.18452/21829. The present text contains minor updates compared to this version, reflecting further developments in the literature, in particular concerning the construction of an elliptic single-valued map.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا