ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Locally Optimal Number Set Partitioning for Scheduling, Allocation and Fair Selection

107   0   0.0 ( 0 )
 نشر من قبل Kaan Gokcesu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the optimization version of the set partition problem (where the difference between the partition sums are minimized), which has numerous applications in decision theory literature. While the set partitioning problem is NP-hard and requires exponential complexity to solve (i.e., intractable); we formulate a weaker version of this NP-hard problem, where the goal is to find a locally optimal solution. We show that our proposed algorithms can find a locally optimal solution in near linear time. Our algorithms require neither positive nor integer elements in the input set, hence, they are more widely applicable.

قيم البحث

اقرأ أيضاً

We study the optimization version of the equal cardinality set partition problem (where the absolute difference between the equal sized partitions sums are minimized). While this problem is NP-hard and requires exponential complexity to solve in gene ral, we have formulated a weaker version of this NP-hard problem, where the goal is to find a locally optimal solution. The local optimality considered in our work is under any swap between the opposing partitions element pairs. To this end, we designed an algorithm which can produce such a locally optimal solution in $O(N^2)$ time and $O(N)$ space. Our approach does not require positive or integer inputs and works equally well under arbitrary input precisions. Thus, it is widely applicable in different problem scenarios.
As important decisions about the distribution of societys resources become increasingly automated, it is essential to consider the measurement and enforcement of fairness in these decisions. In this work we build on the results of Dwork and Ilvento I TCS19, which laid the foundations for the study of fair algorithms under composition. In particular, we study the cohort selection problem, where we wish to use a fair classifier to select $k$ candidates from an arbitrarily ordered set of size $n>k$, while preserving individual fairness and maximizing utility. We define a linear utility function to measure performance relative to the behavior of the original classifier. We develop a fair, utility-optimal $O(n)$-time cohort selection algorithm for the offline setting, and our primary result, a solution to the problem in the streaming setting that keeps no more than $O(k)$ pending candidates at all time.
We develop an approximation algorithm for the partition function of the ferromagnetic Potts model on graphs with a small-set expansion condition, and as a step in the argument we give a graph partitioning algorithm with expansion and minimum degree c onditions on the subgraphs induced by each part. These results extend previous work of Jenssen, Keevash, and Perkins (2019) on the Potts model and related problems in expander graphs, and of Oveis Gharan and Trevisan (2014) on partitioning into expanders.
167 - Siu-Wing Cheng , Yuchen Mao 2018
The restricted max-min fair allocation problem seeks an allocation of resources to players that maximizes the minimum total value obtained by any player. It is NP-hard to approximate the problem to a ratio less than 2. Comparing the current best algo rithm for estimating the optimal value with the current best for constructing an allocation, there is quite a gap between the ratios that can be achieved in polynomial time: roughly 4 for estimation and roughly $6 + 2sqrt{10}$ for construction. We propose an algorithm that constructs an allocation with value within a factor of $6 + delta$ from the optimum for any constant $delta > 0$. The running time is polynomial in the input size for any constant $delta$ chosen.
Modern distributed machine learning (ML) training workloads benefit significantly from leveraging GPUs. However, significant contention ensues when multiple such workloads are run atop a shared cluster of GPUs. A key question is how to fairly apporti on GPUs across workloads. We find that established cluster scheduling disciplines are a poor fit because of ML workloads unique attributes: ML jobs have long-running tasks that need to be gang-scheduled, and their performance is sensitive to tasks relative placement. We propose Themis, a new scheduling framework for ML training workloads. Its GPU allocation policy enforces that ML workloads complete in a finish-time fair manner, a new notion we introduce. To capture placement sensitivity and ensure efficiency, Themis uses a two-level scheduling architecture where ML workloads bid on available resources that are offered in an auction run by a central arbiter. Our auction design allocates GPUs to winning bids by trading off efficiency for fairness in the short term but ensuring finish-time fairness in the long term. Our evaluation on a production trace shows that Themis can improve fairness by more than 2.25X and is ~5% to 250% more cluster efficient in comparison to state-of-the-art schedulers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا