ترغب بنشر مسار تعليمي؟ اضغط هنا

Themis: Fair and Efficient GPU Cluster Scheduling

73   0   0.0 ( 0 )
 نشر من قبل Kshiteej Mahajan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern distributed machine learning (ML) training workloads benefit significantly from leveraging GPUs. However, significant contention ensues when multiple such workloads are run atop a shared cluster of GPUs. A key question is how to fairly apportion GPUs across workloads. We find that established cluster scheduling disciplines are a poor fit because of ML workloads unique attributes: ML jobs have long-running tasks that need to be gang-scheduled, and their performance is sensitive to tasks relative placement. We propose Themis, a new scheduling framework for ML training workloads. Its GPU allocation policy enforces that ML workloads complete in a finish-time fair manner, a new notion we introduce. To capture placement sensitivity and ensure efficiency, Themis uses a two-level scheduling architecture where ML workloads bid on available resources that are offered in an auction run by a central arbiter. Our auction design allocates GPUs to winning bids by trading off efficiency for fairness in the short term but ensuring finish-time fairness in the long term. Our evaluation on a production trace shows that Themis can improve fairness by more than 2.25X and is ~5% to 250% more cluster efficient in comparison to state-of-the-art schedulers.



قيم البحث

اقرأ أيضاً

The problem of attaining energy efficiency in distributed systems is of importance, but a general, non-domain-specific theory of energy-minimal scheduling is far from developed. In this paper, we classify the problems of energy-minimal scheduling and present theoretical foundations of the same. We derive results concerning energy-minimal scheduling of independent jobs in a distributed system with functionally similar machines with different working and idle power ratings. The machines considered in our system can have identical as well as different speeds. If the jobs can be divided into arbitrary parts, we show that the minimum-energy schedule can be generated in linear time and give exact scheduling algorithms. For the cases where jobs are non-divisible, we prove that the scheduling problems are NP-hard and also give approximation algorithms for the same along with their bounds.
In this paper we describe the research and development activities in the Center for Efficient Exascale Discretization within the US Exascale Computing Project, targeting state-of-the-art high-order finite-element algorithms for high-order application s on GPU-accelerated platforms. We discuss the GPU developments in several components of the CEED software stack, including the libCEED, MAGMA, MFEM, libParanumal, and Nek projects. We report performance and capability improvements in several CEED-enabled applications on both NVIDIA and AMD GPU systems.
Efficient GPU resource scheduling is essential to maximize resource utilization and save training costs for the increasing amount of deep learning workloads in shared GPU clusters. Existing GPU schedulers largely rely on static policies to leverage t he performance characteristics of deep learning jobs. However, they can hardly reach optimal efficiency due to the lack of elasticity. To address the problem, we propose ONES, an ONline Evolutionary Scheduler for elastic batch size orchestration. ONES automatically manages the elasticity of each job based on the training batch size, so as to maximize GPU utilization and improve scheduling efficiency. It determines the batch size for each job through an online evolutionary search that can continuously optimize the scheduling decisions. We evaluate the effectiveness of ONES with 64 GPUs on TACCs Longhorn supercomputers. The results show that ONES can outperform the prior deep learning schedulers with a significantly shorter average job completion time.
GPU (graphics processing unit) has been used for many data-intensive applications. Among them, deep learning systems are one of the most important consumer systems for GPU nowadays. As deep learning applications impose deeper and larger models in ord er to achieve higher accuracy, memory management becomes an important research topic for deep learning systems, given that GPU has limited memory size. Many approaches have been proposed towards this issue, e.g., model compression and memory swapping. However, they either degrade the model accuracy or require a lot of manual intervention. In this paper, we propose two orthogonal approaches to reduce the memory cost from the system perspective. Our approaches are transparent to the models, and thus do not affect the model accuracy. They are achieved by exploiting the iterative nature of the training algorithm of deep learning to derive the lifetime and read/write order of all variables. With the lifetime semantics, we are able to implement a memory pool with minimal fragments. However, the optimization problem is NP-complete. We propose a heuristic algorithm that reduces up to 13.3% of memory compared with Nvidias default memory pool with equal time complexity. With the read/write semantics, the variables that are not in use can be swapped out from GPU to CPU to reduce the memory footprint. We propose multiple swapping strategies to automatically decide which variable to swap and when to swap out (in), which reduces the memory cost by up to 34.2% without communication overhead.
There is growing interest in graph pattern mining (GPM) problems such as motif counting. GPM systems have been developed to provide unified interfaces for programming algorithms for these problems and for running them on parallel systems. However, ex isting systems may take hours to mine even simple patterns in moderate-sized graphs, which significantly limits their real-world usability. We present Pangolin, a high-performance and flexible in-memory GPM framework targeting shared-memory CPUs and GPUs. Pangolin is the first GPM system that provides high-level abstractions for GPU processing. It provides a simple programming interface based on the extend-reduce-filter model, which enables users to specify application-specific knowledge for search space pruning and isomorphism test elimination. We describe novel optimizations that exploit locality, reduce memory consumption, and mitigate the overheads of dynamic memory allocation and synchronization. Evaluation on a 28-core CPU demonstrates that Pangolin outperforms existing GPM frameworks Arabesque, RStream, and Fractal by 49x, 88x, and 80x on average, respectively. Acceleration on a V100 GPU further improves performance of Pangolin by 15x on average. Compared to state-of-the-art hand-optimized GPM applications, Pangolin provides competitive performance with less programming effort.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا