ﻻ يوجد ملخص باللغة العربية
The encoder-decoder framework achieves state-of-the-art results in keyphrase generation (KG) tasks by predicting both present keyphrases that appear in the source document and absent keyphrases that do not. However, relying solely on the source document can result in generating uncontrollable and inaccurate absent keyphrases. To address these problems, we propose a novel graph-based method that can capture explicit knowledge from related references. Our model first retrieves some document-keyphrases pairs similar to the source document from a pre-defined index as references. Then a heterogeneous graph is constructed to capture relationships of different granularities between the source document and its references. To guide the decoding process, a hierarchical attention and copy mechanism is introduced, which directly copies appropriate words from both the source document and its references based on their relevance and significance. The experimental results on multiple KG benchmarks show that the proposed model achieves significant improvements against other baseline models, especially with regard to the absent keyphrase prediction.
Keyphrase extraction (KE) aims to summarize a set of phrases that accurately express a concept or a topic covered in a given document. Recently, Sequence-to-Sequence (Seq2Seq) based generative framework is widely used in KE task, and it has obtained
Multi-label text classification (MLTC) is an attractive and challenging task in natural language processing (NLP). Compared with single-label text classification, MLTC has a wider range of applications in practice. In this paper, we propose a heterog
Keyphrase Generation (KG) is the task of generating central topics from a given document or literary work, which captures the crucial information necessary to understand the content. Documents such as scientific literature contain rich meta-sentence
Keyphrases, that concisely summarize the high-level topics discussed in a document, can be categorized into present keyphrase which explicitly appears in the source text, and absent keyphrase which does not match any contiguous subsequence but is hig
Predicting the next interaction of a short-term interaction session is a challenging task in session-based recommendation. Almost all existing works rely on item transition patterns, and neglect the impact of user historical sessions while modeling u