ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterogeneous Global Graph Neural Networks for Personalized Session-based Recommendation

137   0   0.0 ( 0 )
 نشر من قبل Yitong Pang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Predicting the next interaction of a short-term interaction session is a challenging task in session-based recommendation. Almost all existing works rely on item transition patterns, and neglect the impact of user historical sessions while modeling user preference, which often leads to non-personalized recommendation. Additionally, existing personalized session-based recommenders capture user preference only based on the sessions of the current user, but ignore the useful item-transition patterns from other users historical sessions. To address these issues, we propose a novel Heterogeneous Global Graph Neural Networks (HG-GNN) to exploit the item transitions over all sessions in a subtle manner for better inferring user preference from the current and historical sessions. To effectively exploit the item transitions over all sessions from users, we propose a novel heterogeneous global graph that contains item transitions of sessions, user-item interactions and global co-occurrence items. Moreover, to capture user preference from sessions comprehensively, we propose to learn two levels of user representations from the global graph via two graph augmented preference encoders. Specifically, we design a novel heterogeneous graph neural network (HGNN) on the heterogeneous global graph to learn the long-term user preference and item representations with rich semantics. Based on the HGNN, we propose the Current Preference Encoder and the Historical Preference Encoder to capture the different levels of user preference from the current and historical sessions, respectively. To achieve personalized recommendation, we integrate the representations of the user current preference and historical interests to generate the final user preference representation. Extensive experimental results on three real-world datasets show that our model outperforms other state-of-the-art methods.



قيم البحث

اقرأ أيضاً

The purpose of the Session-Based Recommendation System is to predict the users next click according to the previous session sequence. The current studies generally learn user preferences according to the transitions of items in the users session sequ ence. However, other effective information in the session sequence, such as user profiles, are largely ignored which may lead to the model unable to learn the users specific preferences. In this paper, we propose a heterogeneous graph neural network-based session recommendation method, named SR-HetGNN, which can learn session embeddings by heterogeneous graph neural network (HetGNN), and capture the specific preferences of anonymous users. Specifically, SR-HetGNN first constructs heterogeneous graphs containing various types of nodes according to the session sequence, which can capture the dependencies among items, users, and sessions. Second, HetGNN captures the complex transitions between items and learns the item embeddings containing user information. Finally, to consider the influence of users long and short-term preferences, local and global session embeddings are combined with the attentional network to obtain the final session embedding. SR-HetGNN is shown to be superior to the existing state-of-the-art session-based recommendation methods through extensive experiments over two real large datasets Diginetica and Tmall.
398 - Mengqi Zhang , Shu Wu , Meng Gao 2019
The problem of session-aware recommendation aims to predict users next click based on their current session and historical sessions. Existing session-aware recommendation methods have defects in capturing complex item transition relationships. Other than that, most of them fail to explicitly distinguish the effects of different historical sessions on the current session. To this end, we propose a novel method, named Personalized Graph Neural Networks with Attention Mechanism (A-PGNN) for brevity. A-PGNN mainly consists of two components: one is Personalized Graph Neural Network (PGNN), which is used to extract the personalized structural information in each user behavior graph, compared with the traditional Graph Neural Network (GNN) model, which considers the role of the user when the node embeddding is updated. The other is Dot-Product Attention mechanism, which draws on the Transformer net to explicitly model the effect of historical sessions on the current session. Extensive experiments conducted on two real-world data sets show that A-PGNN evidently outperforms the state-of-the-art personalized session-aware recommendation methods.
Different from the traditional recommender system, the session-based recommender system introduces the concept of the session, i.e., a sequence of interactions between a user and multiple items within a period, to preserve the users recent interest. The existing work on the session-based recommender system mainly relies on mining sequential patterns within individual sessions, which are not expressive enough to capture more complicated dependency relationships among items. In addition, it does not consider the cross-session information due to the anonymity of the session data, where the linkage between different sessions is prevented. In this paper, we solve these problems with the graph neural networks technique. First, each session is represented as a graph rather than a linear sequence structure, based on which a novel Full Graph Neural Network (FGNN) is proposed to learn complicated item dependency. To exploit and incorporate cross-session information in the individual sessions representation learning, we further construct a Broadly Connected Session (BCS) graph to link different sessions and a novel Mask-Readout function to improve session embedding based on the BCS graph. Extensive experiments have been conducted on two e-commerce benchmark datasets, i.e., Yoochoose and Diginetica, and the experimental results demonstrate the superiority of our proposal through comparisons with state-of-the-art session-based recommender models.
176 - Dou Hu , Lingwei Wei , Wei Zhou 2021
Session-based recommendation aims to predict user the next action based on historical behaviors in an anonymous session. For better recommendations, it is vital to capture user preferences as well as their dynamics. Besides, user preferences evolve o ver time dynamically and each preference has its own evolving track. However, most previous works neglect the evolving trend of preferences and can be easily disturbed by the effect of preference drifting. In this paper, we propose a novel Preference Evolution Networks for session-based Recommendation (PEN4Rec) to model preference evolving process by a two-stage retrieval from historical contexts. Specifically, the first-stage process integrates relevant behaviors according to recent items. Then, the second-stage process models the preference evolving trajectory over time dynamically and infer rich preferences. The process can strengthen the effect of relevant sequential behaviors during the preference evolution and weaken the disturbance from preference drifting. Extensive experiments on three public datasets demonstrate the effectiveness and superiority of the proposed model.
Predicting a users preference in a short anonymous interaction session instead of long-term history is a challenging problem in the real-life session-based recommendation, e.g., e-commerce and media stream. Recent research of the session-based recomm ender system mainly focuses on sequential patterns by utilizing the attention mechanism, which is straightforward for the sessions natural sequence sorted by time. However, the users preference is much more complicated than a solely consecutive time pattern in the transition of item choices. In this paper, therefore, we study the item transition pattern by constructing a session graph and propose a novel model which collaboratively considers the sequence order and the latent order in the session graph for a session-based recommender system. We formulate the next item recommendation within the session as a graph classification problem. Specifically, we propose a weighted attention graph layer and a Readout function to learn embeddings of items and sessions for the next item recommendation. Extensive experiments have been conducted on two benchmark E-commerce datasets, Yoochoose and Diginetica, and the experimental results show that our model outperforms other state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا