ترغب بنشر مسار تعليمي؟ اضغط هنا

Regional Flood Risk Projections under Climate Change

116   0   0.0 ( 0 )
 نشر من قبل Sanjib Sharma
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Flood-related risks to people and property are expected to increase in the future due to environmental and demographic changes. It is important to quantify and effectively communicate flood hazards and exposure to inform the design and implementation of flood risk management strategies. Here we develop an integrated modeling framework to assess projected changes in regional riverine flood inundation risks. The framework samples climate model outputs to force a hydrologic model and generate streamflow projections. Together with a statistical and hydraulic model, we use the projected streamflow to map the uncertainty of flood inundation projections for extreme flood events. We implement the framework for rivers across the state of Pennsylvania, United States. Our projections suggest that flood hazards and exposure across Pennsylvania are overall increasing with future climate change. Specific regions, including the main stem Susquehanna River, lower portion of the Allegheny basin and central portion of Delaware River basin, demonstrate higher flood inundation risks. In our analysis, the climate uncertainty dominates the overall uncertainty surrounding the flood inundation projection chain. The combined hydrologic and hydraulic uncertainties can account for as much as 37% of the total uncertainty. We discuss how this framework can provide regional and dynamic flood-risk assessments and help to inform the design of risk-management strategies.



قيم البحث

اقرأ أيضاً

The Centre for Climate Change Research (CCCR;http://cccr.tropmet.res.in) at the Indian Institute of Tropical Meteorology (IITM; http://www.tropmet.res.in), Pune, launched in 2009 with the support of the Ministry of Earth Sciences (MoES), Government o f India, focuses on the development of new climate modelling capabilities in India and South Asia to address issues concerning the science of climate change. CCCR-IITM has the mandate of developing an Earth System Model and to make the regional climate projections. An important achievement was made by developing an Earth System Model at IITM, which is an important step towards understanding global and regional climate response to long-term climate variability and climate change. CCCR-IITM has also generated an ensemble of high resolution dynamically downscaled future projections of regional climate over South Asia and Indian monsoon, which are found useful for impact assessment studies and for quantifying uncertainties in the regional projections. A brief overview of these core climate change modeling activities of CCCR-IITM was presented in an Interim Report on Climate Change over India (available at http://cccr.tropmet.res.in/home/reports.jsp)
Assessments of impacts of climate change and future projections over the Indian region, have so far relied on a single regional climate model (RCM) - eg., the PRECIS RCM of the Hadley Centre, UK. While these assessments have provided inputs to variou s reports (e.g., INCCA 2010; NATCOMM2 2012), it is important to have an ensemble of climate projections drawn from multiple RCMs due to large uncertainties in regional-scale climate projections. Ensembles of multi-RCM projections driven under different perceivable socio-economic scenarios are required to capture the probable path of growth, and provide the behavior of future climate and impacts on various biophysical systems and economic sectors dependent on such systems. The Centre for Climate Change Research, Indian Institute of Tropical Meteorology (CCCR-IITM) has generated an ensemble of high resolution downscaled projections of regional climate and monsoon over South Asia until 2100 for the Intergovernmental Panel for Climate Change (IPCC)using a RCM (ICTP-RegCM4) at 50 km horizontal resolution, by driving the regional model with lateral and lower boundary conditions from multiple global atmosphere-ocean coupled models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The future projections are based on three Representation Concentration Pathway (RCP) scenarios (viz., RCP2.6, RCP4.5, RCP8.5) of the IPCC.
Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a popu lation with a deterministic reaction-- diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically , the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.
The impacts of climate change are felt by most critical systems, such as infrastructure, ecological systems, and power-plants. However, contemporary Earth System Models (ESM) are run at spatial resolutions too coarse for assessing effects this locali zed. Local scale projections can be obtained using statistical downscaling, a technique which uses historical climate observations to learn a low-resolution to high-resolution mapping. Depending on statistical modeling choices, downscaled projections have been shown to vary significantly terms of accuracy and reliability. The spatio-temporal nature of the climate system motivates the adaptation of super-resolution image processing techniques to statistical downscaling. In our work, we present DeepSD, a generalized stacked super resolution convolutional neural network (SRCNN) framework for statistical downscaling of climate variables. DeepSD augments SRCNN with multi-scale input channels to maximize predictability in statistical downscaling. We provide a comparison with Bias Correction Spatial Disaggregation as well as three Automated-Statistical Downscaling approaches in downscaling daily precipitation from 1 degree (~100km) to 1/8 degrees (~12.5km) over the Continental United States. Furthermore, a framework using the NASA Earth Exchange (NEX) platform is discussed for downscaling more than 20 ESM models with multiple emission scenarios.
Hurricanes have caused power outages and blackouts, affecting millions of customers and inducing severe social and economic impacts. The impacts of hurricane-caused blackouts may worsen due to increased heat extremes and possibly increased hurricanes under climate change. We apply hurricane and heatwave projections with power outage and recovery process analysis to investigate how the emerging hurricane-blackout-heatwave compound hazard may vary in a changing climate, for Harris County in Texas (including major part of Houston City) as an example. We find that, under the high-emissions scenario RCP8.5, the expected percent of customers experiencing at least one longer-than-5-day hurricane-induced power outage in a 20-year period would increase significantly from 14% at the end of the 20th century to 44% at the end of the 21st century in Harris County. The expected percent of customers who may experience at least one longer-than-5-day heatwave without power (to provide air conditioning) would increase alarmingly, from 0.8% to 15.5%. These increases of risk may be largely avoided if the climate is well controlled under the stringent mitigation scenario RCP2.6. We also reveal that a moderate enhancement of critical sectors of the distribution network can significantly improve the resilience of the entire power grid and mitigate the risk of the future compound hazard. Together these findings suggest that, in addition to climate mitigation, climate adaptation actions are urgently needed to improve the resilience of coastal power systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا