ترغب بنشر مسار تعليمي؟ اضغط هنا

Wetting dynamics in an angular channel

150   0   0.0 ( 0 )
 نشر من قبل Jiajia Zhou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the dynamics of liquid filling in a thin, slightly inflated rectangular channel driven by capillary forces. We show that although the amount of liquid $m$ in the channel increases in time following the classical Lucas-Washburn law, $m propto t^{1/2}$, the prefactor is very sensitive to the deformation of the channel because the filling takes place by the growth of two parts, the bulk part (where the cross-section is completely filled by the liquid), and the finger part (where the cross-section is partially filled). We calculate the time dependence of $m$ accounting for the coupling between the two parts and show that the prefactor for the filling can be reduced significantly by a slight deformation of the rectangular channel, e.g., the prefactor is reduced 50% for a strain of 0.1%. This offers an explanation for the large deviation in the value of the prefactor reported previously.

قيم البحث

اقرأ أيضاً

A theory for wetting of structured solid surfaces is developed, based on the delta-comb periodic potential. It possesses two matching parameters: the effective line tension and the friction coefficient on the three-phase contact line at the surface. The theory is validated on the dynamics of spreading of liquid zinc droplets on morphologically patterned zinkophilic iron surface by means of square patterns of zinkophobic aluminum oxide. It is found that the effective line tension is negative and it has essential contribution to the dynamics of spreading. Thus, the theoretical analysis shows that the presence of lyophobic patterns situated on lyophilic surface makes the latter completely wettable, i.e. no equilibrium contact angle on such surface exists making the droplet spread completely in form of thin liquid layer on the patterned surface.
We consider the active Brownian particle (ABP) model for a two-dimensional microswimmer with fixed speed, whose direction of swimming changes according to a Brownian process. The probability density for the swimmer evolves according to a Fokker-Planc k equation defined on the configuration space, whose structure depends on the swimmers shape, center of rotation and domain of swimming. We enforce zero probability flux at the boundaries of configuration space. We derive a reduced equation for a swimmer in an infinite channel, in the limit of small rotational diffusivity, and find that the invariant density depends strongly on the swimmers precise shape and center of rotation. We also give a formula for the mean reversal time: the expected time taken for a swimmer to completely reverse direction in the channel. Using homogenization theory, we find an expression for the effective longitudinal diffusivity of a swimmer in the channel, and show that it is bounded by the mean reversal time.
The growth of surface plasmonic microbubbles in binary water/ethanol solutions is experimentally studied. The microbubbles are generated by illuminating a gold nanoparticle array with a continuous wave laser. Plasmonic bubbles exhibit ethanol concent ration-dependent behaviors. For low ethanol concentrations (f_e) of < 67.5%, bubbles do not exist at the solid-liquid interface. For high f_e values of >80%, the bubbles behave as in pure ethanol. Only in an intermediate window of 67.5% < f_e < 80% do we find sessile plasmonic bubbles with a highly nontrivial temporal evolution, in which as a function of time three phases can be discerned. (1) In the first phase, the microbubbles grow, while wiggling. (2) As soon as the wiggling stops, the microbubbles enter the second phase in which they suddenly shrink, followed by (3) a steady reentrant growth phase. Our experiments reveal that the sudden shrinkage of the microbubbles in the second regime is caused by a depinning event of the three phase contact line. We systematically vary the ethanol concentration, laser power, and laser spot size to unravel water recondensation as the underlying mechanism of the sudden bubble shrinkage in phase 2.
Although the behavior of fluid-filled vesicles in steady flows has been extensively studied, far less is understood regarding the shape dynamics of vesicles in time-dependent oscillatory flows. Here, we investigate the nonlinear dynamics of vesicles in large amplitude oscillatory extensional (LAOE) flows using both experiments and boundary integral (BI) simulations. Our results characterize the transient membrane deformations, dynamical regimes, and stress response of vesicles in LAOE in terms of reduced volume (vesicle asphericity), capillary number ($Ca$, dimensionless flow strength), and Deborah number ($De$, dimensionless flow frequency). Results from single vesicle experiments are found to be in good agreement with BI simulations across a wide range of parameters. Our results reveal three distinct dynamical regimes based on vesicle deformation: pulsating, reorienting, and symmetrical regimes. We construct phase diagrams characterizing the transition of vesicle shapes between pulsating, reorienting, and symmetrical regimes within the two-dimensional Pipkin space defined by $De$ and $Ca$. Contrary to observations on clean Newtonian droplets, vesicles do not reach a maximum length twice per strain rate cycle in the reorienting and pulsating regimes. The distinct dynamics observed in each regime result from a competition between the flow frequency, flow time scale, and membrane deformation timescale. By calculating the particle stresslet, we quantify the nonlinear relationship between average vesicle stress and strain rate. Additionally, we present results on tubular vesicles that undergo shape transformation over several strain cycles. Broadly, our work provides new information regarding the transient dynamics of vesicles in time-dependent flows that directly informs bulk suspension rheology.
248 - J. Koplik , T. S. Lo , M. Rauscher 2005
We investigate the flow of a nano-scale incompressible ridge of low-volatility liquid along a chemical channel: a long, straight, and completely wetting stripe embedded in a planar substrate, and sandwiched between two extended less wetting solid reg ions. Molecular dynamics simulations, a simple long-wavelength approximation, and a full stability analysis based on the Stokes equations are used, and give qualitatively consistent results. While thin liquid ridges are stable both statically and during flow, a (linear) pearling instability develops if the thickness of the ridge exceeds half of the width of the channel. In the flowing case periodic bulges propagate along the channel and subsequently merge due to nonlinear effects. However, the ridge does not break up even when the flow is unstable, and the qualitative behavior is unchanged even when the fluid can spill over onto a partially wetting exterior solid region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا