ترغب بنشر مسار تعليمي؟ اضغط هنا

Incentivizing an Unknown Crowd

70   0   0.0 ( 0 )
 نشر من قبل Jing Dong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the common strategic activities in crowdsourcing labeling, we study the problem of sequential eliciting information without verification (EIWV) for workers with a heterogeneous and unknown crowd. We propose a reinforcement learning-based approach that is effective against a wide range of settings including potential irrationality and collusion among workers. With the aid of a costly oracle and the inference method, our approach dynamically decides the oracle calls and gains robustness even under the presence of frequent collusion activities. Extensive experiments show the advantage of our approach. Our results also present the first comprehensive experiments of EIWV on large-scale real datasets and the first thorough study of the effects of environmental variables.

قيم البحث

اقرأ أيضاً

The design of personalized incentives or recommendations to improve user engagement is gaining prominence as digital platform providers continually emerge. We propose a multi-armed bandit framework for matching incentives to users, whose preferences are unknown a priori and evolving dynamically in time, in a resource constrained environment. We design an algorithm that combines ideas from three distinct domains: (i) a greedy matching paradigm, (ii) the upper confidence bound algorithm (UCB) for bandits, and (iii) mixing times from the theory of Markov chains. For this algorithm, we provide theoretical bounds on the regret and demonstrate its performance via both synthetic and realistic (matching supply and demand in a bike-sharing platform) examples.
We study the problem of incentivizing exploration for myopic users in linear bandits, where the users tend to exploit arm with the highest predicted reward instead of exploring. In order to maximize the long-term reward, the system offers compensatio n to incentivize the users to pull the exploratory arms, with the goal of balancing the trade-off among exploitation, exploration and compensation. We consider a new and practically motivated setting where the context features observed by the user are more informative than those used by the system, e.g., features based on users private information are not accessible by the system. We propose a new method to incentivize exploration under such information gap, and prove that the method achieves both sublinear regret and sublinear compensation. We theoretical and empirically analyze the added compensation due to the information gap, compared with the case that the system has access to the same context features as the user, i.e., without information gap. We also provide a compensation lower bound of our problem.
Federated learning (FL) is an emerging technique used to train a machine-learning model collaboratively using the data and computation resource of the mobile devices without exposing privacy-sensitive user data. Appropriate incentive mechanisms tha t motivate the data and mobile-device owner to participate in FL is key to building a sustainable platform for FL. However, it is difficult to evaluate the contribution level of the devices/owners to determine appropriate rewards without large computation and communication overhead. This paper proposes a computation-and communication-efficient method of estimating a participating devices contribution level. The proposed method enables such estimation during a single FL training process, there by reducing the need for traffic and computation overhead. The performance evaluations using the MNIST dataset show that the proposed method estimates individual participants contributions accurately with 46-49% less computation overhead and no communication overhead than a naive estimation method.
Traffic flow prediction is crucial for urban traffic management and public safety. Its key challenges lie in how to adaptively integrate the various factors that affect the flow changes. In this paper, we propose a unified neural network module to ad dress this problem, called Attentive Crowd Flow Machine~(ACFM), which is able to infer the evolution of the crowd flow by learning dynamic representations of temporally-varying data with an attention mechanism. Specifically, the ACFM is composed of two progressive ConvLSTM units connected with a convolutional layer for spatial weight prediction. The first LSTM takes the sequential flow density representation as input and generates a hidden state at each time-step for attention map inference, while the second LSTM aims at learning the effective spatial-temporal feature expression from attentionally weighted crowd flow features. Based on the ACFM, we further build a deep architecture with the application to citywide crowd flow prediction, which naturally incorporates the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks (i.e., crowd flow in Beijing and New York City) show that the proposed method achieves significant improvements over the state-of-the-art methods.
In this chapter, we discuss the mathematical modeling of egressing pedestrians in an unknown environment with multiple exits. We investigate different control problems to enhance the evacuation time of a crowd of agents, by few informed individuals, named leaders. Leaders are not recognizable as such and consist of two groups: a set of unaware leaders moving selfishly toward a fixed target, whereas the rest is coordinated to improve the evacuation time introducing different performance measures. Follower-leader dynamics is initially described microscopically by an agent-based model, subsequently a mean-field type model is introduced to approximate the large crowd of followers. The mesoscopic scale is efficiently solved by a class of numerical schemes based on direct simulation Monte-Carlo methods. Optimization of leader strategies is performed by a modified compass search method in the spirit of metaheuristic approaches. Finally, several virtual experiments are studied for various control settings and environments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا