ﻻ يوجد ملخص باللغة العربية
With the prevalence of social media, there has recently been a proliferation of recommenders that shift their focus from individual modeling to group recommendation. Since the group preference is a mixture of various predilections from group members, the fundamental challenge of group recommendation is to model the correlations among members. Existing methods mostly adopt heuristic or attention-based preference aggregation strategies to synthesize group preferences. However, these models mainly focus on the pairwise connections of users and ignore the complex high-order interactions within and beyond groups. Besides, group recommendation suffers seriously from the problem of data sparsity due to severely sparse group-item interactions. In this paper, we propose a self-supervised hypergraph learning framework for group recommendation to achieve two goals: (1) capturing the intra- and inter-group interactions among users; (2) alleviating the data sparsity issue with the raw data itself. Technically, for (1), a hierarchical hypergraph convolutional network based on the user- and group-level hypergraphs is developed to model the complex tuplewise correlations among users within and beyond groups. For (2), we design a double-scale node dropout strategy to create self-supervision signals that can regularize user representations with different granularities against the sparsity issue. The experimental analysis on multiple benchmark datasets demonstrates the superiority of the proposed model and also elucidates the rationality of the hypergraph modeling and the double-scale self-supervision.
Session-based recommendation (SBR) focuses on next-item prediction at a certain time point. As user profiles are generally not available in this scenario, capturing the user intent lying in the item transitions plays a pivotal role. Recent graph neur
Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, rea
Trip recommendation is a significant and engaging location-based service that can help new tourists make more customized travel plans. It often attempts to suggest a sequence of point of interests (POIs) for a user who requests a personalized travel
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data. At their core, such approaches model transition probabilities between items in a sequence, whether
Self-supervised learning (SSL), which can automatically generate ground-truth samples from raw data, holds vast potential to improve recommender systems. Most existing SSL-based methods perturb the raw data graph with uniform node/edge dropout to gen