ﻻ يوجد ملخص باللغة العربية
We provide a simple proof of the bifurcation condition for localized bulging in a hyperelastic tube of arbitrary thickness that is subjected to combined axial loading and internal pressure. Using analytic tools, we prove that the bifurcation condition is equivalent to the vanishing of the Jacobian of the internal pressure $P$ and the resultant axial force $N$, with each of them viewed as a function of the azimuthal stretch on the inner surface and the axial stretch. Previously this was only established by numerical calculations. The method should be applicable to any bifurcations that depend on a slowly varying variable, concluding that they share the same bifurcation conditions with bifurcations into uniform/homogeneous states as long as the equations determining the bifurcation condition are not trivially satisfied by uniform/homogeneous solutions.
Assuming a steady-state condition within a cell, metabolic fluxes satisfy an under-determined linear system of stoichiometric equations. Characterizing the space of fluxes that satisfy such equations along with given bounds (and possibly additional r
In this paper we present a proof system that operates on graphs instead of formulas. Starting from the well-known relationship between formulas and cographs, we drop the cograph-conditions and look at arbitrary undirected) graphs. This means that we
In the emerging field of 3D bioprinting, cell damage due to large deformations is considered a main cause for cell death and loss of functionality inside the printed construct. Those deformations, in turn, strongly depend on the mechano-elastic respo
Previous linear bifurcation analyses have evidenced that an axially stretched soft cylindrical tube may develop an infinite-wavelength (localised) instability when one or both of its lateral surfaces are under sufficient surface tension. Phase transi
We propose an analytic proof of the Malgrange-Sibuya theorem concerning a sufficient condition of the convergence of a formal power series satisfying an ordinary differential equation. The proof is based on the majorant method and allows to estimate the radius of convergence of such a series.