ترغب بنشر مسار تعليمي؟ اضغط هنا

Post-bifurcation behaviour of elasto-capillary necking and bulging in soft tubes

93   0   0.0 ( 0 )
 نشر من قبل Dominic Emery
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous linear bifurcation analyses have evidenced that an axially stretched soft cylindrical tube may develop an infinite-wavelength (localised) instability when one or both of its lateral surfaces are under sufficient surface tension. Phase transition interpretations have also highlighted that the tube admits a final evolved two-phase state. How the localised instability initiates and evolves into the final two-phase state is still a matter of contention, and this is the focus of the current study. Through a weakly non-linear analysis conducted for a general material model, the initial sub-critical bifurcation solution is found to be localised bulging or necking depending on whether the axial stretch is greater or less than a certain threshold value. At this threshold value, an exceptionally super-critical kink-wave solution arises in place of localisation. A thorough interpretation of the anticipated post-bifurcation behaviour based on our theoretical results is also given, and this is supported by Finite Element Method (FEM) simulations.



قيم البحث

اقرأ أيضاً

128 - Dominic Emery , Yibin Fu 2021
We provide an extension to previous analysis of the localised beading instability of soft slender tubes under surface tension and axial stretching. The primary questions pondered here are: under what loading conditions, if any, can bifurcation into c ircumferential buckling modes occur, and do such solutions dominate localisation and periodic axial modes? Three distinct boundary conditions are considered; in case 1 the tubes curved surfaces are traction free and under surface tension, whilst in cases 2 and 3 the inner and outer surfaces (respectively) are fixed to prevent radial displacement and surface tension. A linear bifurcation analysis is conducted to determine numerically the existence of circumferential mode solutions. In case 1 we focus on the tensile stress regime given the preference of slender compressed tubes towards Euler buckling over axial wrinkling. We show that tubes under several loading paths are highly sensitive to circumferential modes; in contrast, localised and periodic axial modes are absent, suggesting that the circumferential buckling is dominant by default. In case 2, circumferential mode solutions are associated with negative surface tension values and thus are physically implausible. Circumferential buckling solutions are shown to exist in case 3 for tensile and compressive axial loads, and we demonstrate for multiple loading scenarios their dominance over localisation and periodic axial modes within specific parameter regimes.
67 - Dominic Emery , Yibin Fu 2021
We investigate localised bulging or necking in an incompressible, hyperelastic cylindrical tube under axial stretching and surface tension. Three cases are considered in which the tube is subjected to different constraints. In case 1 the inner and ou ter surfaces are traction-free and under surface tension, whilst in cases 2 and 3 the inner and outer surfaces (respectively) are fixed to prevent radial displacement and surface tension. However, each free surface in these latter two cases is still under surface tension. We first state the analytical bifurcation conditions for localisation and then validate them numerically whilst determining whether localisation is preferred over bifurcation into periodic modes. It is shown that bifurcation into a localised solution is unattainable in case 1 but possible and favourable in cases 2 and 3. In contrast, in case 1 any bifurcation must necessarily take the form of a periodic mode with a non-zero wave number. Our results are validated using Finite Element Method (FEM) simulations.
A liquid surface touching a solid usually deforms in a near-wall meniscus region. In this work, we replace part of the free surface with a soft polymer and examine the shape of this elasto-capillary meniscus, result of the interplay between elasticit y, capillarity and hydrostatic pressure. We focus particularly on the extraction threshold for the soft object. Indeed, we demonstrate both experimentally and theoretically the existence of a limit height of liquid tenable before breakdown of the compound, and extraction of the object. Such an extraction force is known since Laplace and Gay-Lussac, but only in the context of rigid floating objects. We revisit this classical problem by adding the elastic ingredient and predict the extraction force in terms of the strip elastic properties. It is finally shown that the critical force can be increased with elasticity, as is commonplace in adhesion phenomena
148 - N. Adami , A. Delbos , B. Roman 2013
Flexible rings and rectangle structures floating at the surface of water are prone to deflect under the action of surface pressure induced by the addition of surfactant molecules on the bath. While the frames of rectangles bend inward or outward for any surface pressure difference, circles are only deformed by compression beyond a critical buckling load. However, compressed frames also undergo a secondary buckling instability leading to a rhoboidal shape. Following the pioneering works of cite{Hu} and cite{Zell}, we describe both experimentally and theoretically the different elasto-capillary deflection and buckling modes as a function of the material parameters. In particular we show how this original fluid structure interaction may be used to probe the adsorption of surfactant molecules at liquid interfaces.
128 - Xiang Yu , Yibin Fu 2021
We provide a simple proof of the bifurcation condition for localized bulging in a hyperelastic tube of arbitrary thickness that is subjected to combined axial loading and internal pressure. Using analytic tools, we prove that the bifurcation conditio n is equivalent to the vanishing of the Jacobian of the internal pressure $P$ and the resultant axial force $N$, with each of them viewed as a function of the azimuthal stretch on the inner surface and the axial stretch. Previously this was only established by numerical calculations. The method should be applicable to any bifurcations that depend on a slowly varying variable, concluding that they share the same bifurcation conditions with bifurcations into uniform/homogeneous states as long as the equations determining the bifurcation condition are not trivially satisfied by uniform/homogeneous solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا