ترغب بنشر مسار تعليمي؟ اضغط هنا

An Analytic Propositional Proof System on Graphs

296   0   0.0 ( 0 )
 نشر من قبل Ross Horne
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a proof system that operates on graphs instead of formulas. Starting from the well-known relationship between formulas and cographs, we drop the cograph-conditions and look at arbitrary undirected) graphs. This means that we lose the tree structure of the formulas corresponding to the cographs, and we can no longer use standard proof theoretical methods that depend on that tree structure. In order to overcome this difficulty, we use a modular decomposition of graphs and some techniques from deep inference where inference rules do not rely on the main connective of a formula. For our proof system we show the admissibility of cut and a generalization of the splitting property. Finally, we show that our system is a conservative extension of multiplicative linear logic with mix, and we argue that our graphs form a notion of generalized connective.



قيم البحث

اقرأ أيضاً

Separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are abstract because they are independent of any particular concrete memory model. Their assertion languages, called proposition al abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theory for various propositional abstract separation logics using cut-free labelled sequent calculi. We first extend the cut-fee labelled sequent calculus for BBI of Hou et al to handle Calcagno et als original logic of separation algebras by adding sound rules for partial-determinism and cancellativity, while preserving cut-elimination. We prove the completeness of our calculus via a sound intermediate calculus that enables us to construct counter-models from the failure to find a proof. We then capture other propositional abstract separation logics by adding sound rules for indivisible unit and disjointness, while maintaining completeness. We present a theorem prover based on our labelled calculus for these propositional abstract separation logics.
277 - Jean Gallier 2006
It is well known that the resolution method (for propositional logic) is complete. However, completeness proofs found in the literature use an argument by contradiction showing that if a set of clauses is unsatisfiable, then it must have a resolution refutation. As a consequence, none of these proofs actually gives an algorithm for producing a resolution refutation from an unsatisfiable set of clauses. In this note, we give a simple and constructive proof of the completeness of propositional resolution which consists of an algorithm together with a proof of its correctness.
We study counting propositional logic as an extension of propositional logic with counting quantifiers. We prove that the complexity of the underlying decision problem perfectly matches the appropriate level of Wagners counting hierarchy, but also th at the resulting logic admits a satisfactory proof-theoretical treatment. From the latter, a type system for a probabilistic lambda-calculus is derived in the spirit of the Curry-Howard correspondence, showing the potential of counting propositional logic as a useful tool in several fields of theoretical computer science.
Normalization fails in type theory with an impredicative universe of propositions and a proof-irrelevant propositional equality. The counterexample to normalization is adapted from Girards counterexample against normalization of System F equipped wit h a decider for type equality. It refutes Werners normalization conjecture [LMCS 2008].
It is well-known that the size of propositional classical proofs can be huge. Proof theoretical studies discovered exponential gaps between normal or cut free proofs and their respective non-normal proofs. The aim of this work is to study how to redu ce the weight of propositional deductions. We present the formalism of proof-graphs for purely implicational logic, which are graphs of a specific shape that are intended to capture the logical structure of a deduction. The advantage of this formalism is that formulas can be shared in the reduced proof. In the present paper we give a precise definition of proof-graphs for the minimal implicational logic, together with a normalization procedure for these proof-graphs. In contrast to standard tree-like formalisms, our normalization does not increase the number of nodes, when applied to the corresponding minimal proof-graph representations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا