ﻻ يوجد ملخص باللغة العربية
Kinship verification is a long-standing research challenge in computer vision. The visual differences presented to the face have a significant effect on the recognition capabilities of the kinship systems. We argue that aggregating multiple visual knowledge can better describe the characteristics of the subject for precise kinship identification. Typically, the age-invariant features can represent more natural facial details. Such age-related transformations are essential for face recognition due to the biological effects of aging. However, the existing methods mainly focus on employing the single-view image features for kinship identification, while more meaningful visual properties such as race and age are directly ignored in the feature learning step. To this end, we propose a novel deep collaborative multi-modal learning (DCML) to integrate the underlying information presented in facial properties in an adaptive manner to strengthen the facial details for effective unsupervised kinship verification. Specifically, we construct a well-designed adaptive feature fusion mechanism, which can jointly leverage the complementary properties from different visual perspectives to produce composite features and draw greater attention to the most informative components of spatial feature maps. Particularly, an adaptive weighting strategy is developed based on a novel attention mechanism, which can enhance the dependencies between different properties by decreasing the information redundancy in channels in a self-adaptive manner. To validate the effectiveness of the proposed method, extensive experimental evaluations conducted on four widely-used datasets show that our DCML method is always superior to some state-of-the-art kinship verification methods.
Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation
In this paper, we introduce a new framework for unsupervised deep homography estimation. Our contributions are 3 folds. First, unlike previous methods that regress 4 offsets for a homography, we propose a homography flow representation, which can be
Cross-modal correlation provides an inherent supervision for video unsupervised representation learning. Existing methods focus on distinguishing different video clips by visual and audio representations. We human visual perception could attend to re
In this paper, we investigate the research problem of unsupervised multi-view feature selection. Conventional solutions first simply combine multiple pre-constructed view-specific similarity structures into a collaborative similarity structure, and t
Modern Earth Observation systems provide sensing data at different temporal and spatial resolutions. Among optical sensors, today the Sentinel-2 program supplies high-resolution temporal (every 5 days) and high spatial resolution (10m) images that ca