ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Modal Attention Consistency for Video-Audio Unsupervised Learning

140   0   0.0 ( 0 )
 نشر من قبل Shaobo Min
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross-modal correlation provides an inherent supervision for video unsupervised representation learning. Existing methods focus on distinguishing different video clips by visual and audio representations. We human visual perception could attend to regions where sounds are made, and our auditory perception could also ground their frequencies of sounding objects, which we call bidirectional local correspondence. Such supervision is intuitive but not well explored in the contrastive learning framework. This paper introduces a pretext task, Cross-Modal Attention Consistency (CMAC), for exploring the bidirectional local correspondence property. The CMAC approach aims to align the regional attention generated purely from the visual signal with the target attention generated under the guidance of acoustic signal, and do a similar alignment for frequency grounding on the acoustic attention. Accompanied by a remoulded cross-modal contrastive loss where we consider additional within-modal interactions, the CMAC approach works effectively for enforcing the bidirectional alignment. Extensive experiments on six downstream benchmarks demonstrate that CMAC can improve the state-of-the-art performance on both visual and audio modalities.



قيم البحث

اقرأ أيضاً

We introduce a new approach for audio-visual speech separation. Given a video, the goal is to extract the speech associated with a face in spite of simultaneous background sounds and/or other human speakers. Whereas existing methods focus on learning the alignment between the speakers lip movements and the sounds they generate, we propose to leverage the speakers face appearance as an additional prior to isolate the corresponding vocal qualities they are likely to produce. Our approach jointly learns audio-visual speech separation and cross-modal speaker embeddings from unlabeled video. It yields state-of-the-art results on five benchmark datasets for audio-visual speech separation and enhancement, and generalizes well to challenging real-world videos of diverse scenarios. Our video results and code: http://vision.cs.utexas.edu/projects/VisualVoice/.
Cross-modal retrieval is generally performed by projecting and aligning the data from two different modalities onto a shared representation space. This shared space often also acts as a bridge for translating the modalities. We address the problem of learning such representation space by proposing and exploiting the property of Discriminative Semantic Transitive Consistency -- ensuring that the data points are correctly classified even after being transferred to the other modality. Along with semantic transitive consistency, we also enforce the traditional distance minimizing constraint which makes the projections of the corresponding data points from both the modalities to come closer in the representation space. We analyze and compare the contribution of both the loss terms and their interaction, for the task. In addition, we incorporate semantic cycle-consistency for each of the modality. We empirically demonstrate better performance owing to the different components with clear ablation studies. We also provide qualitative results to support the proposals.
Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been deri ved from the RGB image space. However, video data is usually associated with multi-modal information, e.g., RGB and optical flow, and thus it remains a challenge to design a better method that considers the cross-modal inputs under the cross-domain adaptation setting. To this end, we propose a unified framework for video domain adaptation, which simultaneously regularizes cross-modal and cross-domain feature representations. Specifically, we treat each modality in a domain as a view and leverage the contrastive learning technique with properly designed sampling strategies. As a result, our objectives regularize feature spaces, which originally lack the connection across modalities or have less alignment across domains. We conduct experiments on domain adaptive action recognition benchmark datasets, i.e., UCF, HMDB, and EPIC-Kitchens, and demonstrate the effectiveness of our components against state-of-the-art algorithms.
Learning to synthesize high frame rate videos via interpolation requires large quantities of high frame rate training videos, which, however, are scarce, especially at high resolutions. Here, we propose unsupervised techniques to synthesize high fram e rate videos directly from low frame rate videos using cycle consistency. For a triplet of consecutive frames, we optimize models to minimize the discrepancy between the center frame and its cycle reconstruction, obtained by interpolating back from interpolated intermediate frames. This simple unsupervised constraint alone achieves results comparable with supervision using the ground truth intermediate frames. We further introduce a pseudo supervised loss term that enforces the interpolated frames to be consistent with predictions of a pre-trained interpolation model. The pseudo supervised loss term, used together with cycle consistency, can effectively adapt a pre-trained model to a new target domain. With no additional data and in a completely unsupervised fashion, our techniques significantly improve pre-trained models on new target domains, increasing PSNR values from 32.84dB to 33.05dB on the Slowflow and from 31.82dB to 32.53dB on the Sintel evaluation datasets.
Recent works have advanced the performance of self-supervised representation learning by a large margin. The core among these methods is intra-image invariance learning. Two different transformations of one image instance are considered as a positive sample pair, where various tasks are designed to learn invariant representations by comparing the pair. Analogically, for video data, representations of frames from the same video are trained to be closer than frames from other videos, i.e. intra-video invariance. However, cross-video relation has barely been explored for visual representation learning. Unlike intra-video invariance, ground-truth labels of cross-video relation is usually unavailable without human labors. In this paper, we propose a novel contrastive learning method which explores the cross-video relation by using cycle-consistency for general image representation learning. This allows to collect positive sample pairs across different video instances, which we hypothesize will lead to higher-level semantics. We validate our method by transferring our image representation to multiple downstream tasks including visual object tracking, image classification, and action recognition. We show significant improvement over state-of-the-art contrastive learning methods. Project page is available at https://happywu.github.io/cycle_contrast_video.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا